## Workshop GT Metodologia/CPAMP

Ciclo 2021/2022: PAR(p)-A + Calibração do CVaR



06/10/2021

MINISTÉRIO DE MINAS E ENERGIA



**Membros:** 







**Eletrobras**Cepel

### Agenda

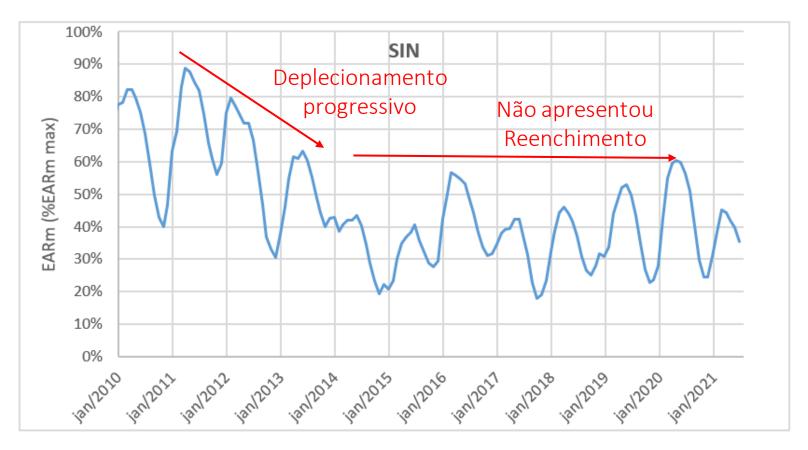
- 1. Contextualização e cronograma
- 2. Análises metodológicas e testes preliminares
- 3. Critério de parada
- 4. Backtests e análises prospectivas: premissas e métricas
- 5. FTs NEWAVE/DECOMP
- 6. Dúvidas, contribuições e comentários

### Agenda

- 1. Contextualização e cronograma
- 2. Análises metodológicas e testes preliminares
- 3. Critério de parada
- 4. Backtests e análises prospectivas: premissas e métricas
- 5. FTs NEWAVE/DECOMP
- 6. Dúvidas, contribuições e comentários

#### Contextualização

#### Recomendação do CMSE à CPAMP (234ª Reunião - 02/set/2020)


• Avaliar os mecanismos visando a **elevação estrutural dos níveis de armazenamento** dos reservatórios, sobretudo aos **finais dos períodos secos**, bem como propor uma transição capaz de **minimizar os impactos no GSF e na tarifa do consumidor** de energia elétrica.

#### Deliberação da CPAMP, publicada em 23/jul/2021<sup>1</sup>

- "Entre as principais motivações para os aperfeiçoamentos propostos consta a necessidade identificada de se melhorar a representação da realidade operativa do Sistema Interligado Nacional (SIN) nos modelos, e proporcionar o adequado sinal econômico do PLD e justa alocação dos custos para os diversos segmentos. (...)
- A CPAMP manteve o compromisso de **validação do PAR(p)-A no primeiro trimestre de 2022, associada à calibração do CVaR**, para atualização da **representação da aversão ao risco mais aderente à realidade operativa** do SIN. Essas mudanças, nos termos da Resolução CNPE nº 7/2016, só terão eficácia na operação e na formação de preços **a partir de 2023**."

¹https://www.gov.br/mme/pt-br/assuntos/noticias/cpamp-decide-sobre-implementacao-de-aprimoramentos-propostos-nos-modelos-computacionais-no-ciclo-de-atividades-2019-2020-2021

#### Contextualização



#### Próximos ciclos

• Continuidade dos demais temas (produtibilidade e perdas variáveis, taxa de desconto, SUISHI hidrotérmico, fontes intermitentes, NEWAVE híbrido, *unit commitment* hidráulico)

Workshop **20/outubro**:

#### Cronograma

- Conclusão das atividades da Etapa 1
- Resultados das simulações para o conjunto de parâmetros do CVaR → Definição dos 4 pares para sensibilidade dos backtests e análises prospectivas

i. Análises metodológicas e testes preliminares

ii. Critério de parada (convergência e tempo computacional)

iii. Backtests e análises prospectivas: premissas e métricas

iv. FTs NEWAVE/DECOMP

Ago a 15/Out/21 Backtests e análises prospectivas: execução, compilação e análise al)

15/Out a 15/Dez/21



21/----/22\*

Deliberação final

31/mar/22\*

Operação sombra 2022\*

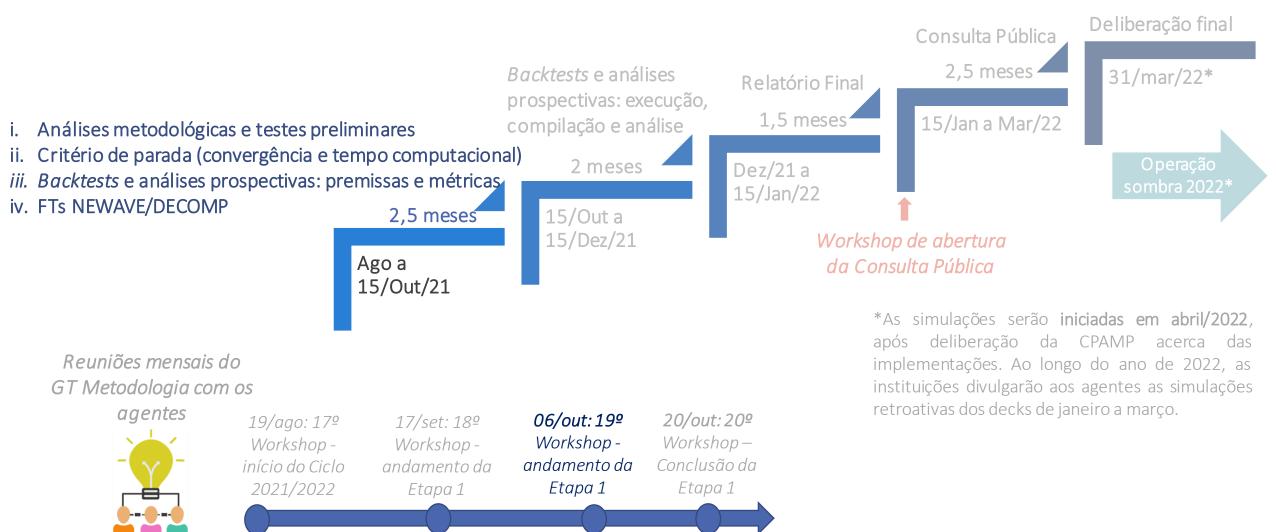
Workshop de abertura da Consulta Pública

\*As simulações serão iniciadas em abril/2022, após deliberação da CPAMP acerca das implementações. Ao longo do ano de 2022, as instituições divulgarão aos agentes as simulações retroativas dos decks de janeiro a março.

Reuniões mensais do GT Metodologia com os agentes



19/ago: 17º Workshop início do Ciclo 2021/2022


17/set: 18º Workshop andamento da Etapa 1

2,5 meses

**06/out: 19º**Workshop andamento da
Etapa 1

**20/out: 20º** Workshop − Conclusão da Etapa 1

#### Cronograma



### Agenda

- 1. Contextualização e cronograma
- 2. Análises metodológicas e testes preliminares
- 3. Critério de parada
- 4. Backtests e análises prospectivas: premissas e métricas
- 5. FTs NEWAVE/DECOMP
- 6. Dúvidas, contribuições e comentários

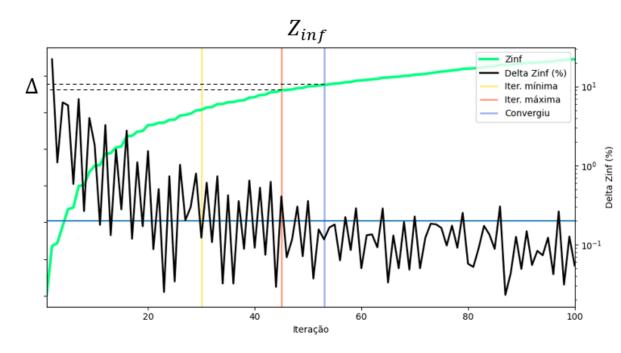
# Análises metodológicas e testes preliminares Em andamento (Agosto a 15/Outubro)

- Análise da formulação exata do PAR(p)-A na PDDE (Relatório Técnico CEPEL nº 1941/2021);
  - > Buscando também um alinhamento com instituições de pesquisa para auxiliar nas análises.
  - > Conduzida uma análise detalhada do Relatório Técnico e enviou seus comentários ao CEPEL. Em andamento
- Testes do novo modelo NEWAVE: o ajuste da metodologia PAR(p)-A foi na PDDE, não devendo impactar na geração de cenários:
  - Testes para conferência da proposta metodológica; Em andamento
  - Testes de sanidade dos arquivos de saída da nova implementação;
     Em andamento
    - Para os testes de sanidade, a CPAMP irá recepcionar versão do CEPEL com as saídas que propiciem fazer o recalculo dos coeficientes da FCF.
- Resultados para casos de planejamento da expansão, cálculo da garantia física, operação e formação do PLD: Em andamento
  - Comparação dos resultados obtidos com PAR(p) e PAR(p)-A, considerando o mesmo número de iterações e simulação final com série histórica;
  - Análise da resposta do modelo (energia armazenada, geração térmica/hidráulica, outros).

### Agenda

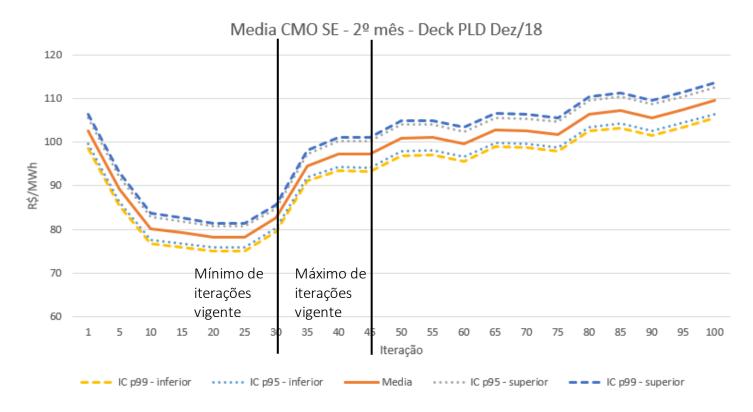
- 1. Contextualização e cronograma
- 2. Análises metodológicas e testes preliminares
- 3. Critério de parada
- 4. Backtests e análises prospectivas: premissas e métricas
- 5. FTs NEWAVE/DECOMP
- 6. Dúvidas, contribuições e comentários

## Análise de Convergência – Casos com CVaR


ullet O critério de parada atual é em função da variação de  $Z_{inf}$ :

$$\Delta Z_{inf}(t) = \frac{Z_{inf}(t) - Z_{inf}(t-1)}{Z_{inf}(t-1)}$$

- São consideradas n iterações consecutivas com variação menor que p%. Atualmente:
  - n = 3
  - p = 0.2




• Avaliar estabilidade de variáveis operativas



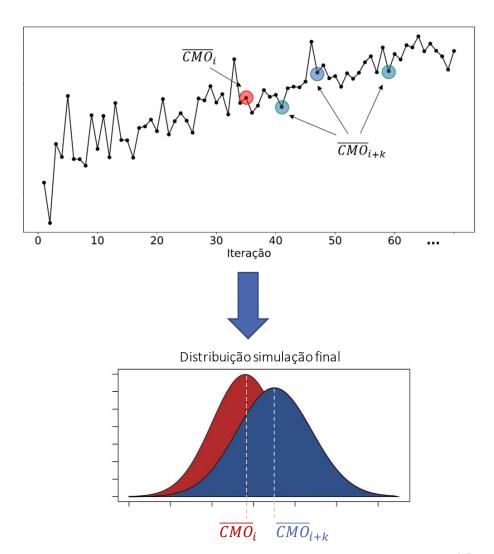
## Análise de Convergência - PPQ

- Paralelo ao critério de estabilidade de  $Z_{inf}$ , é considerada a estabilidade das variáveis analisadas, obtida com a funcionalidade de Pseudo Partida Quente (PPQ)
- Aplicando a PPQ para uma iteração por vez e executando o NWLISTOP com os arquivos forward.dat e forwarh.dat obtidos a cada simulação final, obtém-se:



#### Teste Estatístico (t-Student pareado)

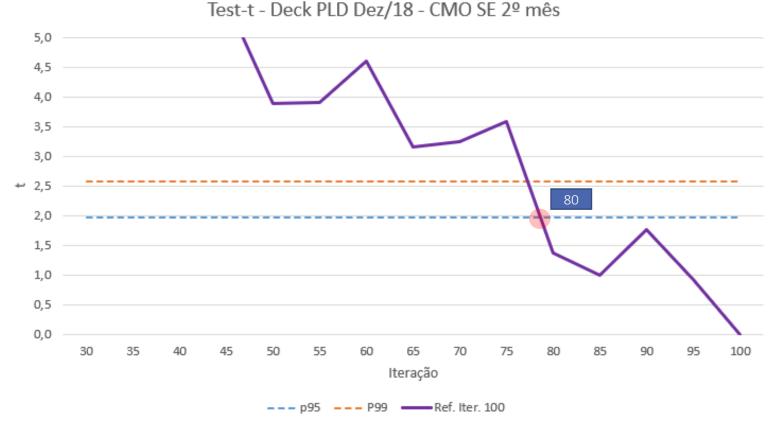
- Para avaliar a equivalência entre as políticas em uma iteração i e outra i+k para uma certa variável da operação, utiliza-se o teste t-Student pareado;
- O mesmo teste foi utilizado no relatório do GT-Metodologia para avaliação da reamostragem:


Relatório Técnico do GT Metodologia da CPAMP - nº 002-2018\_rv0 de 31 de agosto de 2018

• Hipótese a ser testada ( $H_0$ ):  $\overline{CMO}_i = \overline{CMO}_{i+k}$ 

• Estatística de teste: (t-Student)

$$t = \frac{\overline{CMO}_i - \overline{CMO}_{i+k}}{S_{CMO_iCMO_{i+k}} \sqrt{\frac{2}{n}}}$$


onde: 
$$S_{CMO_iCMO_{i+k}} = \sqrt{\frac{S_{CMO_i}^2 + S_{CMO_i+k}^2}{2}}$$



#### Proposta metodológica: Consulta da iteração individual

- 1. Consulta ao resultado do teste-t, com a referência em 100 iterações (máximo de iterações) para cada variável analisada (CMO\_SE, CMO\_NE, GT\_SIN, GH\_SIN, EARM\_SIN). Cada tipo de estudo fez a análise no período de maior relevância;
- 2. Definir em qual iteração não há mais diferenças estatísticas entre as médias das distribuições em relação à iteração 100 (Casos de PMO, PLD, e Garantia Física);

• Analisar a primeira iteração a partir da qual não há mais rejeição, considerando o intervalo de confiança de 95%.



## Proposta metodológica: Consulta da iteração individual

3. Verificação entre todas as saídas qual o número máximo de interações necessárias para cada caso.

| Caso     | CMO SE | CMO NE | GT | GH | EARM |
|----------|--------|--------|----|----|------|
| Dez/2018 | 80     | 80     | 80 | 80 | -    |

4. Definição de pontos no "mapa de calor de iterações" considerando até 5 iterações acima do definido pelo critério acima.

#### Deck de PLD de Dez/2018

| N/delta | 0,1 | 0,15 | 0,2 | 0,25 | 0,3 | 0,35 | 0,4 | 0,45 | 0,5 | 0,55 | 0,6 | 0,65 | 0,7 | 0,75 | 0,8 | 0,85 | 0,9 | 0,95 |
|---------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|
| 2       | 68  | 68   | 53  | 44   | 16  | 16   | 16  | 16   | 16  | 16   | 16  | 16   | 16  | 16   | 16  | 16   | 8   | 8    |
| 3       | 100 | 83   | 75  | 45   | 39  | 39   | 39  | 39   | 39  | 39   | 39  | 39   | 20  | 20   | 20  | 20   | 20  | 20   |
| 4       | 100 | 84   | 76  | 50   | 40  | 40   | 40  | 40   | 40  | 40   | 40  | 40   | 21  | 21   | 21  | 21   | 21  | 21   |
| 5       | 100 | 85   | 77  | 51   | 41  | 41   | 41  | 41   | 41  | 41   | 41  | 41   | 41  | 41   | 41  | 41   | 35  | 32   |
| 6       | 100 | 86   | 84  | 52   | 52  | 48   | 48  | 42   | 42  | 42   | 42  | 42   | 42  | 42   | 42  | 42   | 42  | 33   |
| 7       | 100 | 87   | 85  | 53   | 53  | 49   | 49  | 43   | 43  | 43   | 43  | 43   | 43  | 43   | 43  | 43   | 43  | 34   |
| 8       | 100 | 88   | 86  | 54   | 54  | 50   | 50  | 44   | 44  | 44   | 44  | 44   | 44  | 44   | 44  | 44   | 44  | 35   |

Para a simulação de deck de PLD de Dez/2018 as combinações seriam de:

- 3, 4 ou 5 iterações com % de  $\Delta Zinf$  abaixo de 0.15%
- 6 ou 7 iterações com % de  $\Delta Zinf$  abaixo de 0.2%

- 5. Esse processo será repetido os casos de PMO, PLD e GF
- O critério de parada será definido pela maioria das simulações que apresentarem critérios iguais

### Critério de parada - Premissas e Casos

#### Premissas para execução dos casos

- Casos com **aversão ao risco** com CVaR e VminOp
- Níveis do VminOp aprovados para 2022
  - Sudeste, Paraná e Paranapanema = 20%
  - Sul e Iguaçu = 30%
  - Nordeste = 23,5%
  - Norte = 20,8% (18% em dezembro o 1º ano)
- Simulação final com série sintética



#### **Casos** analisados

PLD Janeiro/2016

PLD Dezembro/2018

PLD Novembro/2020

PMO Out/17

PMO Jan/21

PMO Jul/14

PMO Janeiro/2021 condicionado

18 Sensibilidades – 3 variações de ENA e 3 variações de EARM para os meses de maio e dezembro

EPE Garantia Física Fletrobrás

ONS

CCEE

CPAMP - Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico **GT METODOLOGIA** 

#### **Casos CCEE - Resultados**

#### **Casos** analisados

CCEE PLD Janeiro/2016
PLD Dezembro/2018
PLD Novembro/2020

Avaliação do número máximo de iterações necessárias para cada caso com base no teste t

| Variável | Jan/2016 | Dez/2018 | Nov/2020 |  |  |  |  |
|----------|----------|----------|----------|--|--|--|--|
| CMO SE   | 70       | 80       | 65       |  |  |  |  |
| CMO NE   | 65       | 80       | 80       |  |  |  |  |
| GT       | 95       | 80       | 80       |  |  |  |  |
| GH       | 70       | 80       | 80       |  |  |  |  |
| EARM     | -        | -        | -        |  |  |  |  |

Pares para a convergência considerando até 5 iterações acima do máximo de iterações

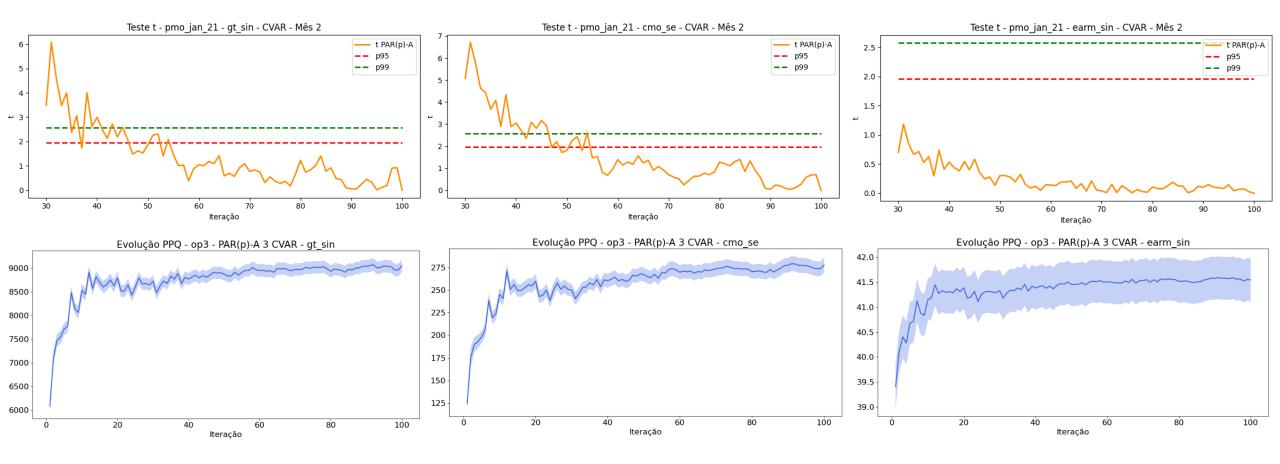
| N/delta | 0,1 | 0,15 | 0,2 | 0,25 | 0,3 | 0,35 | 0,4 | 0,45 | 0,5 |
|---------|-----|------|-----|------|-----|------|-----|------|-----|
| 2       | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   |
| 3       | 0   | 1    | 0   | 0    | 0   | 0    | 0   | 0    | 0   |
| 4       | 0   | 1    | 1   | 0    | 0   | 0    | 0   | 0    | 0   |
| 5       | 0   | 1    | 1   | 0    | 0   | 0    | 0   | 0    | 0   |
| 6       | 0   | 0    | 1   | 1    | 0   | 0    | 0   | 0    | 0   |
| 7       | 0   | 0    | 1   | 1    | 0   | 0    | 0   | 0    | 0   |
| 8       | 0   | 0    | 0   | 1    | 0   | 0    | 0   | 0    | 0   |

#### Casos ONS

- Casos oficiais
  - PMO Jul/14
  - PMO Out/17
  - PMO Jan/21

Total de 3 casos

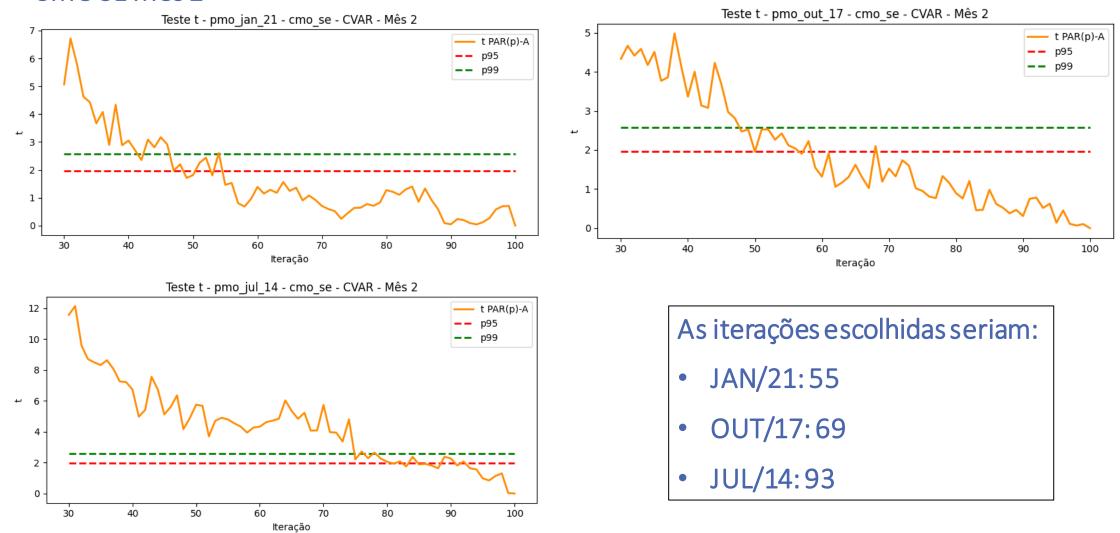
- Casos condicionados (base PMO Jan/21):
  - Início do estudo em MAI / DEZ
  - ENA: 50% MLT, Base e 100% MLT
  - EARM: Base, 40% EARMax e 60% EARMax


Total de 18 casos (3 EARM x 3 ENA x 2 Inícios de Estudo);

Início do período de estudo em MAI/21 e DEZ/21;

|              | Configuraçã | o: PMO Jan/21 |            |   |
|--------------|-------------|---------------|------------|---|
| EARM         | Base (≈20%) | 40% EARMax    | 60% EARMax |   |
| ENA          | 50% MLT     | Base (≈70%)   | 100% MLT   |   |
| mais crítico |             | menos crítico |            | j |

<sup>\*</sup> Premissas previamente mencionadas


#### PMOs Oficiais - Estabilidade das Variáveis



CPAMP - Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico GT METODOLOGIA

#### PMOs Oficiais - Casos com It. de Referência = 100

#### • CMOSEMês 2



CPAMP - Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico GT METODOLOGIA

## PMOs Oficiais - Casos com It. de Referência = 100

• Considera-se a máxima entre cada uma das variáveis, para cada caso:

| Caso   | CMO SE | CMO NE | GHTOT SIN | EARM SIN | GT SIN |
|--------|--------|--------|-----------|----------|--------|
| JAN/21 | 55     | 53     | 54        | 30       | 54     |
| OUT/17 | 69     | 69     | 73        | 30       | 73     |
| JUL/14 | 93     | 84     | 60        | 30       | 60     |
| Média  | 70     | 69     | 63        | 30       | 63     |

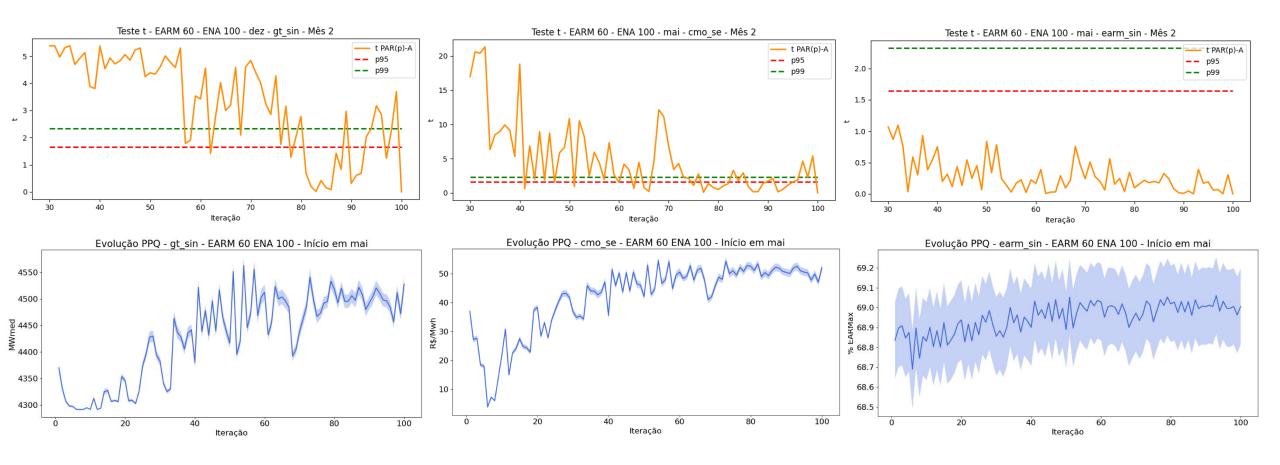
• São consideradas as iterações de convergência de cada caso:

| Caso   | lter. Máx. | Iter. Méd. |
|--------|------------|------------|
| JAN/21 | 55         | 50         |
| OUT/17 | 73         | 63         |
| JUL/14 | 93         | 66         |

## PMOs Oficiais - Seleção dos pares $(N, \delta)$ – Caso Jan/21 (exemplo)

- São considerados os pares  $N, \delta$  para os valores presentes no mapa de sensibilidades que convirjam na iteração máxima indicada no teste tou até 5 iterações acima;
- Para JAN/21 (iteração 55 segundo o teste t):

|         |     |      |     |      |     |      | PΝ  | /IO Jan | /21 CP | AMP  |     |      |     |      |     |      |     |      |
|---------|-----|------|-----|------|-----|------|-----|---------|--------|------|-----|------|-----|------|-----|------|-----|------|
| N/Delta | 0.1 | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45    | 0.5    | 0.55 | 0.6 | 0.65 | 0.7 | 0.75 | 0.8 | 0.85 | 0.9 | 0.95 |
| 2       | 100 | 85   | 70  | 57   | 53  | 43   | 43  | 43      | 41     | 41   | 41  | 41   | 28  | 21   | 21  | 21   | 21  | 21   |
| 3       | 100 | 89   | 75  | 61   | 54  | 44   | 44  | 44      | 42     | 42   | 42  | 42   | 40  | 22   | 22  | 22   | 22  | 22   |
| 4       | 100 | 90   | 81  | 62   | 59  | 53   | 45  | 45      | 43     | 43   | 43  | 43   | 41  | 41   | 41  | 41   | 23  | 23   |
| 5       | 100 | 91   | 82  | 63   | 60  | 54   | 46  | 46      | 44     | 44   | 44  | 44   | 42  | 42   | 42  | 42   | 24  | 24   |
| 6       | 100 | 92   | 89  | 64   | 61  | 61   | 47  | 47      | 45     | 45   | 45  | 45   | 43  | 43   | 43  | 43   | 25  | 25   |
| 7       | 100 | 93   | 90  | 83   | 62  | 62   | 48  | 48      | 46     | 46   | 46  | 46   | 44  | 44   | 44  | 44   | 44  | 44   |
| 8       | 100 | 94   | 91  | 84   | 63  | 63   | 57  | 49      | 47     | 47   | 47  | 47   | 45  | 45   | 45  | 45   | 45  | 45   |


#### PMOs Oficiais - Casos com It. de Referência = 100

Considerando os pares escolhidos para cada caso:

|         | Pares Considerados para Convergência - PMOs |      |     |      |     |      |     |      |     |      |     |      |     |      |     |      |     |      |
|---------|---------------------------------------------|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|-----|------|
| N/Delta | 0.1                                         | 0.15 | 0.2 | 0.25 | 0.3 | 0.35 | 0.4 | 0.45 | 0.5 | 0.55 | 0.6 | 0.65 | 0.7 | 0.75 | 8.0 | 0.85 | 0.9 | 0.95 |
| 2       | 0                                           | 0    | 0   | 1    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    |
| 3       | 0                                           | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    |
| 4       | 0                                           | 0    | 0   | 0    | 1   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    |
| 5       | 0                                           | 0    | 0   | 0    | 1   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    |
| 6       | 0                                           | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    |
| 7       | 0                                           | 1    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    |
| 8       | 0                                           | 1    | 0   | 0    | 0   | 0    | 1   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    | 0   | 0    |

- Os casos apresentam comportamentos muito distintos. Todos são críticos, mas a configuração do sistema é diferente para cada um deles;
- A mesma análise é feita com os casos condicionados, pois todos possuem configuração recente e variam em criticidade;

## Casos Condicionados - Estabilidade das Variáveis - Caso EARM 60 ENA 100 MAI



CPAMP - Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico GT METODOLOGIA

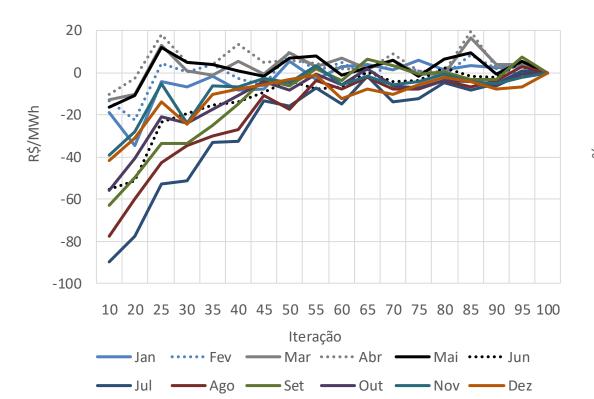
## Casos Condicionados – Maio/2021

| Iteração de Convergência do NW - EARMREF - ENA50 - MAI                                  | Iteração de Convergência do NW - EARM40 - ENA50 - MAI                                   | Iteração de Convergência do NW - EARM60 - ENASO - MAI                                   |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 |
| 2 46 38 26 24 19 19 19 19 19 19 19 19 13 13 13 13 13 13                                 | 2 52 33 33 23 23 23 23 23 23 18 18 18 18 18 18 18 18 18 18 18                           | 2 44 34 28 28 28 28 28 28 28 28 21 16 16 16 16 16 16 16                                 |
| 3 56 50 42 25 25 24 20 20 20 20 20 14 14 14 14 14 14 14                                 | 3                                                                                       | 3 77 65 48 48 48 38 29 29 29 29 29 29 25 25 25 25 25 25 25 25 25 25 25 25 25            |
| 4 57 51 43 26 26 25 21 21 21 21 21 21 21 21 21 21 21 15 15                              | 4                                                                                       | 4 100 78 66 62 49 39 39 39 39 39 39 39 39 36 36 30 30                                   |
| 5 58 52 49 44 44 26 22 22 22 22 22 22 22 22 22 22 16 16                                 | 5                                                                                       | 5 100 79 67 63 50 50 50 40 40 40 40 40 40 40 37 37 31 31                                |
| 6 59 53 50 45 45 37 23 23 23 23 23 23 23 23 23 23 23 23 23                              | 6 76 73 50 50 42 42 42 27 27 27 27 27 27 27 27 27 27 27 27 27                           | 6 100 80 68 64 51 51 51 41 41 41 41 41 41 38 38 38 32                                   |
| 7 67 54 51 46 46 38 24 24 24 24 24 24 24 24 24 24 24 24 24                              | 7 100 74 51 51 43 43 43 28 28 28 28 28 28 28 28 28 28 28 28 28                          | 7 100 81 81 65 65 59 59 42 42 42 42 42 42 39 39 39 33                                   |
| 8 68 55 52 47 47 47 25 25 25 25 25 25 25 25 25 25 25 25 25                              | 8 100 75 52 52 44 44 44 29 29 29 29 29 29 29 29 29 29 29 29 29                          | 8 100 95 82 66 66 60 60 43 43 43 43 43 43 40 40 40 34                                   |
|                                                                                         |                                                                                         |                                                                                         |
| Iteração de Convergência do NW - EARMREF - ENAREF - MAI                                 | Iteração de Convergência do NW - EARM40 - ENAREF - MAI                                  | Iteração de Convergência do NW - EARM60 - ENAREF - MAI                                  |
| N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 |
| 2 58 39 39 34 34 34 34 27 27 24 24 19 19 19 19 19 19 19                                 | 2 86 73 38 38 38 38 35 35 35 29 29 29 29 29 27 23 18                                    | 2 58 58 58 41 41 36 36 36 36 36 36 36 31 31 29 23 23 23                                 |
| 3 71 40 40 40 40 40 40 28 28 28 28 28 28 28 28 23 23 23                                 | 3 97 80 63 48 48 48 44 42 42 39 39 39 36 36 33 28 24 24                                 | 3 100 90 64 64 64 53 50 42 42 42 42 35 35 30 24 24 24                                   |
| 4 91 69 41 41 41 41 41 41 41 35 35 35 35 29 24 24 24                                    | 4 97 91 81 75 53 49 49 43 43 40 40 40 37 37 34 29 29 29                                 | 4 100 91 65 65 65 54 51 43 43 43 43 36 36 31 31 25 25                                   |
| 5 92 70 61 50 50 42 42 42 42 36 36 36 36 36 30 30 30 30                                 | 5 97 92 82 76 54 50 50 44 44 41 41 41 38 38 35 35 35 35                                 | 5 100 92 66 66 66 66 52 44 44 44 44 37 37 37 37 26 26                                   |
| 6 93 71 62 51 51 43 43 43 43 43 43 43 43 31 31 31 31                                    | 6 97 93 83 83 66 51 51 45 45 42 42 42 39 39 36 36 36 36                                 | 6 100 100 92 92 73 73 53 53 45 45 45 45 38 38 38 38 38 38                               |
| 7 94 94 72 52 52 44 44 44 44 44 44 44 44 44 32 32 32 32 32                              | 7 97 94 94 84 67 52 52 46 46 43 43 43 40 40 37 37 37 37                                 | 7 100 100 93 93 84 81 54 54 46 46 46 46 46 46 46 46 39 39                               |
| 8 95 95 73 53 53 53 53 53 53 53 45 45 45 33 33 33 33                                    | 8 97 95 95 85 79 53 53 47 47 44 44 44 41 41 38 38 38 38                                 | 8 100 100 100 94 85 82 75 64 64 55 55 47 47 47 47 47 40 40                              |
|                                                                                         |                                                                                         |                                                                                         |
| Iteração de Convergência do NW - EARMREF - ENA 100 - MAI                                | Iteração de Convergência do NW - EARM40 - ENA 100 - MAI                                 | lteração de Convergência do NW - EARM60 - ENA 100 - MAI                                 |
| N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 |
| 2 85 54 32 32 32 32 32 32 20 20 20 20 20 20 20 20 20 20 20 20 20                        | 2 45 45 27 27 27 27 27 27 27 27 24 24 24 24 24 24 24 24                                 | 2 100 63 60 38 38 36 31 18 18 18 18 18 18 18 18 18 18 18 18                             |
| 3 86 74 74 45 45 45 39 37 37 36 36 36 24 24 24 24 24                                    | 3 100 89 76 71 66 66 49 49 49 49 49 49 49 49 46 36 36 36                                | 3 100 82 71 48 48 37 37 37 37 37 37 37 37 37 24 24 24 24                                |
| 4 87 75 75 69 64 59 40 38 38 38 37 37 37 25 25 25 25 25 25                              | 4 100 90 84 72 67 67 50 50 50 50 50 50 50 50 47 41 41 41                                | 4 100 87 72 72 65 38 38 38 38 38 38 38 38 38 38 38 38 38                                |
| 5 88 76 76 70 65 65 47 39 39 39 38 38 38 26 26 26 26 26 26                              | 5 100 91 85 78 78 73 51 51 51 51 51 51 51 51 48 42 42 42                                | 5 100 88 73 73 66 66 47 39 39 39 39 39 39 39 39 39 39 39 39 39                          |
| 6 89 77 77 71 66 66 48 40 40 40 39 39 39 39 27 27 27 27                                 | 6 100 100 100 79 79 74 63 52 52 52 52 52 52 52 49 43 43 43                              | 6 100 89 74 74 67 67 48 40 40 40 40 40 40 40 40 40 40 40                                |
| 7 90 78 78 72 67 67 49 41 41 40 40 40 40 28 28 28 28                                    | 7 100 100 100 100 87 75 64 53 53 53 53 53 50 44 44 44                                   | 7 100 90 75 75 75 75 75 41 41 41 41 41 41 41 41 41 41 41                                |
| 8 100 79 79 73 68 68 50 42 42 41 41 41 41 29 29 29 29 29                                | 8 100 100 100 100 88 76 65 54 54 54 54 54 54 51 45 45 45                                | 8 100 100 76 76 76 76 76 42 42 42 42 42 42 42 42 42 42 42 42 42                         |
|                                                                                         |                                                                                         |                                                                                         |

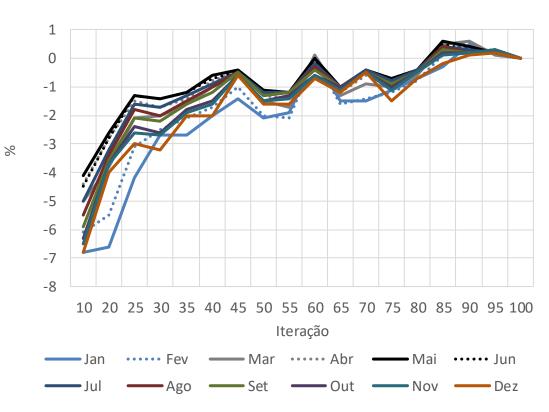
## Casos Condicionados – Dez/2021

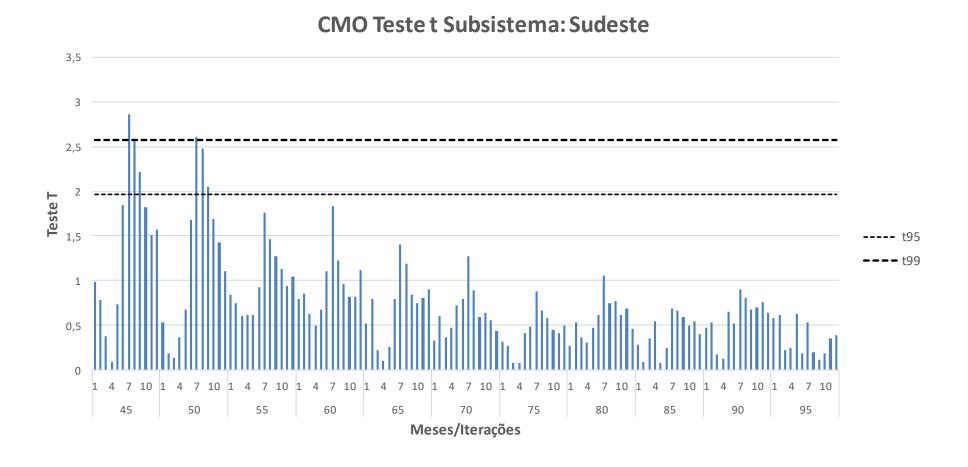
| Iteração de Convergência do NW - EARMREF - ENA50 - DEZ                                  | Iteração de Convergência do NW - EARM40 - ENA50 - DEZ                                    | Iteração de Convergência do NW - EARM60 - ENA50 - DEZ                                   |  |  |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|
| N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95  | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 |  |  |  |  |
| 2 76 52 47 46 46 35 30 30 26 25 23 23 23 23 19 19 19 19                                 | 2 22 22 22 22 22 22 22 22 22 19 19 19 19 19 19 19 12 12                                  | 2 100 54 26 26 26 26 22 22 22 22 22 22 22 22 22                                         |  |  |  |  |
| 3 77 53 53 47 47 47 31 31 27 26 24 24 24 24 20 20 20 20                                 | 3 96 58 54 43 35 35 35 35 35 35 35 35 35 35 29 29 26                                     | 3 100 94 76 55 55 55 42 42 42 37 33 31 31 31 31 27 27 27                                |  |  |  |  |
| 4 90 54 54 52 52 52 37 32 32 27 25 25 25 25 25 25 25 25 25 25 25 25 25                  | 4 97 59 59 44 44 44 44 44 44 40 36 36 36 36 36 36 27                                     | 4 100 95 77 77 70 51 43 43 38 38 32 32 32 32 32 32 32 32                                |  |  |  |  |
| 5 91 60 55 53 53 53 43 43 33 28 26 26 26 26 26 26 26 26 26                              | 5 98 87 73 54 54 45 45 45 45 45 41 37 37 37 37 37 37 28                                  | 5 100 96 78 78 78 71 57 57 57 52 33 33 33 33 33 33 33 33                                |  |  |  |  |
| 6 92 61 56 54 54 54 44 44 34 29 27 27 27 27 27 27 27 27 27                              | 6 99 94 74 61 55 55 55 46 46 46 42 38 38 38 38 38 38 29                                  | 6 100 100 79 79 79 72 72 70 70 58 53 45 40 40 40 40 40 40                               |  |  |  |  |
| 7 93 62 57 55 55 55 45 45 35 30 28 28 28 28 28 28 28 28 28                              | 7 100 95 75 62 56 56 56 47 47 47 43 39 39 39 39 39 39 39 30                              | 7 100 100 92 87 80 73 73 71 71 59 54 46 41 41 41 41 41 41 41                            |  |  |  |  |
| 8 94 63 58 56 56 56 46 46 36 31 29 29 29 29 29 29 29 29 29 29 29 29 29                  | 8 100 96 76 76 57 57 57 48 48 48 44 40 40 40 40 40 40 31                                 | 8 100 100 93 88 81 74 74 72 72 60 55 55 42 42 42 42 42 42 42                            |  |  |  |  |
|                                                                                         |                                                                                          |                                                                                         |  |  |  |  |
| Iteração de Convergência do NW - EARMREF - ENAREF - DEZ                                 | Iteração de Convergência do NW - EARM40 - ENAREF - DEZ                                   | lteração de Convergência do NW - EARM60 - ENAREF - DEZ                                  |  |  |  |  |
| N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 |  |  |  |  |
| 2 87 68 59 46 43 29 27 27 27 27 23 21 21 21 21 21 21 21 21 21 21 21 21 21               | 2 91 68 62 50 42 42 42 42 40 33 33 32 32 32 30 21 21 21                                  | 2 38 38 38 38 38 38 38 38 38 38 35 35 35 19 19 19 19                                    |  |  |  |  |
| 3 88 78 68 50 47 47 28 28 28 28 24 22 22 22 22 22 22 22 22 22 22 22 22                  | 3 92 74 63 54 43 43 43 43 41 34 34 33 33 33 31 31 31 31                                  | 3 92 88 75 52 52 52 52 46 43 42 42 42 42 39 39 20 20                                    |  |  |  |  |
| 4 89 79 75 61 48 48 29 29 29 29 23 23 23 23 23 23 23 23 23 23 23 23 23                  | 4 100 75 75 59 55 48 48 48 42 40 35 34 34 34 32 32 32 32                                 | 4 99 89 76 53 53 53 53 47 44 43 43 43 43 40 40 21 21                                    |  |  |  |  |
| 5 90 80 76 62 49 49 49 49 49 46 46 24 24 24 24 24 24 24 24                              | 5 100 76 76 76 56 49 49 49 43 41 41 35 35 35 33 33 33 33                                 | 5 100 90 77 75 54 54 54 48 45 44 44 44 44 41 41 22 22                                   |  |  |  |  |
| 6 91 87 77 75 50 50 50 50 50 47 47 31 25 25 25 25 25 25                                 | 6 100 88 77 77 57 50 50 50 50 42 42 42 42 34 34 34 34 34                                 | 6 100 91 88 76 72 69 55 55 46 45 45 45 45 45 42 42 42 42                                |  |  |  |  |
| 7 92 88 78 76 51 51 51 51 51 48 48 48 26 26 26 26 26 26 26                              | 7 100 96 78 78 58 51 51 51 51 43 43 43 43 35 35 35 35                                    | 7 100 92 89 77 73 70 56 56 47 46 46 46 46 46 43 43 43 43                                |  |  |  |  |
| 8 93 89 79 77 52 52 52 52 52 49 49 49 27 27 27 27 27 27 27 27 27 27 27 27 27            | 8 100 97 79 79 59 52 52 52 52 44 44 44 44 44 36 36 36 36 36                              | 8 100 93 90 90 74 71 71 57 48 47 47 47 47 47 44 44 44 44                                |  |  |  |  |
|                                                                                         |                                                                                          |                                                                                         |  |  |  |  |
| Iteração de Convergência do NW - EARMREF - ENA 100 - DEZ                                | Iteração de Convergência do NW - EARM40 - ENA100 - DEZ                                   | Iteração de Convergência do NW - EARM60 - ENA 100 - DEZ                                 |  |  |  |  |
| N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95  | N/Delta 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 |  |  |  |  |
| 2 93 74 51 48 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                             | 2 70 50 47 46 46 39 39 39 26 26 26 26 26 26 20 20 18                                     | 2 71 71 48 40 39 39 39 39 26 16 16 16 16 16 16 16 16 16                                 |  |  |  |  |
| 3 100 75 52 52 46 42 42 42 30 30 30 30 30 30 28 28 28 28                                | 3 100 74 74 47 47 47 40 40 40 40 27 27 27 27 27 21 21 19                                 | 3 100 92 49 47 40 40 40 40 40 40 38 38 38 27 27 27 24 24                                |  |  |  |  |
| 4 100 85 70 53 47 43 43 43 31 31 31 31 31 29 29 29 29                                   | 4 100 75 75 48 48 48 41 41 41 41 28 28 28 28 28 28 28 20                                 | 4 100 99 50 48 48 45 45 45 45 45 39 39 39 28 28 28 25 25                                |  |  |  |  |
| 5 100 86 77 77 48 44 44 44 47 37 37 37 37 30 30 30 30                                   | 5 100 76 76 49 49 49 49 42 42 42 42 39 39 34 34 34 21                                    | 5 100 100 74 49 49 46 46 46 46 46 40 40 40 40 40 40 26 26                               |  |  |  |  |
| 6 100 87 78 78 55 45 45 45 45 38 38 38 38 38 31 31 31 31                                | 6 100 77 77 50 50 50 50 43 43 43 43 40 40 35 35 35 35                                    | 6 100 100 75 50 50 47 47 47 47 47 47 47 41 41 41 27 27                                  |  |  |  |  |
| 7 100 88 79 79 56 46 46 46 46 39 39 39 39 39 39 39 39 39 39                             | 7 100 78 78 78 51 51 51 44 44 44 44 44 41 41 36 36 36 36                                 | 7 100 100 76 76 71 48 48 48 48 48 48 48 48 42 42 42 28 28                               |  |  |  |  |
| 8 100 89 80 80 73 47 47 47 40 40 40 40 40 40 40 40 40 40                                | 8 100 100 93 79 52 52 52 45 45 45 45 45 42 42 37 37 37 37                                | 8 100 100 77 77 72 49 49 49 49 49 49 49 49 43 43 43 41 41                               |  |  |  |  |
|                                                                                         | ·                                                                                        | <del>-</del>                                                                            |  |  |  |  |

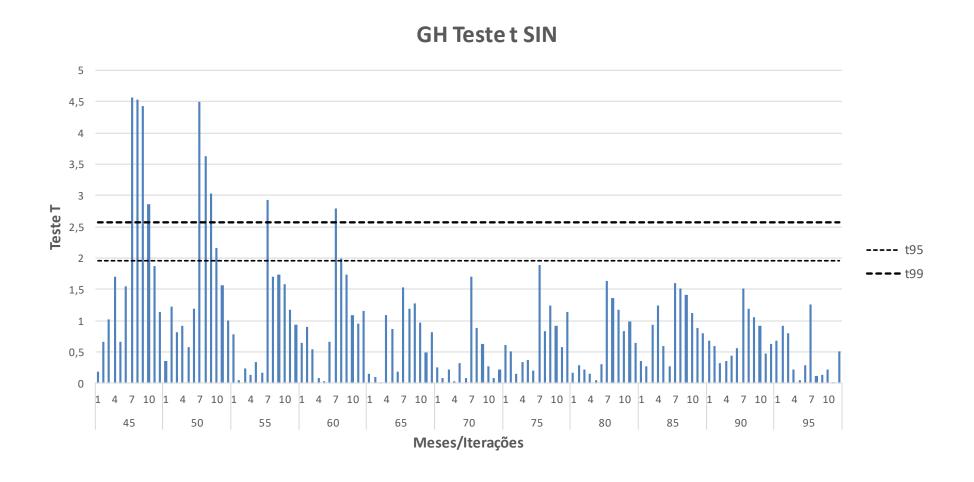
## Casos Condicionados – Compilação de resultados

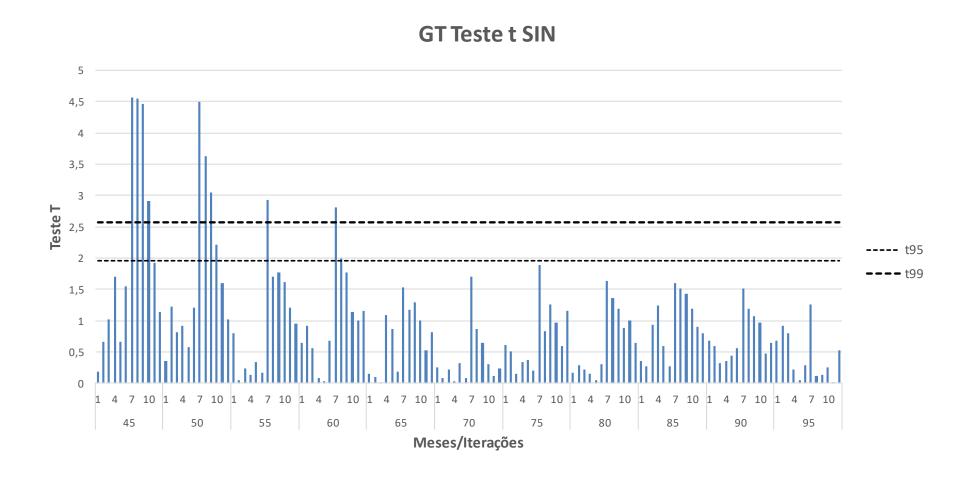

• Considerando o máximo dentre as iterações:

|         |     |      |     | Par  | es Cor | sidera | dos pa | ra Con | /ergên | cia - Ca | sos Co | ndicior | nados |      |     |      |     |      |
|---------|-----|------|-----|------|--------|--------|--------|--------|--------|----------|--------|---------|-------|------|-----|------|-----|------|
| N/Delta | 0.1 | 0.15 | 0.2 | 0.25 | 0.3    | 0.35   | 0.4    | 0.45   | 0.5    | 0.55     | 0.6    | 0.65    | 0.7   | 0.75 | 0.8 | 0.85 | 0.9 | 0.95 |
| 2       | 3   | 0    | 0   | 0    | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0       | 0     | 0    | 0   | 0    | 0   | 0    |
| 3       | 10  | 1    | 0   | 0    | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0       | 0     | 0    | 0   | 0    | 0   | 0    |
| 4       | 11  | 2    | 0   | 0    | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0       | 0     | 0    | 0   | 0    | 0   | 0    |
| 5       | 10  | 3    | 1   | 0    | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0       | 0     | 0    | 0   | 0    | 0   | 0    |
| 6       | 10  | 5    | 3   | 0    | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0       | 0     | 0    | 0   | 0    | 0   | 0    |
| 7       | 11  | 5    | 3   | 1    | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0       | 0     | 0    | 0   | 0    | 0   | 0    |
| 8       | 11  | 8    | 4   | 3    | 0      | 0      | 0      | 0      | 0      | 0        | 0      | 0       | 0     | 0    | 0   | 0    | 0   | 0    |


• Com base nos pares escolhidos, é sugerida a parametrização  $(N, \delta) = (x, y)$ ;


## Caso GF Eletrobrás | Avaliação da estabilidade do CMO e armazenamento


Diferença CMO Sudeste Ano 2026 - Caso GF Eletrobrás Em relação à iter 100: Média 2.000 séries




Diferença EARMFP SIN Ano 2026 - Caso GF Eletrobrás Em relação à iter 100: Média 2.000 séries









| Variável      | Iteração   |
|---------------|------------|
| CMO SE/S/NE/N | 55         |
| GT            | 65         |
| GH            | 65         |
| EARM          | Em análise |
| COPER         | Em análise |



| Caso GF Eletrobrás PAR(p)-A_V27.4.10 |                       |     |     |     |     |  |
|--------------------------------------|-----------------------|-----|-----|-----|-----|--|
| N/Delta                              | 0.1                   | 0.2 | 0.3 | 0.4 | 0.5 |  |
| 1                                    | 7                     | 3   | 3   | 3   | 2   |  |
| 2                                    | 77                    | 56  | 8   | 8   | 3   |  |
| 3                                    | 100                   | 57  | 9   | 9   | 4   |  |
| 4                                    | 100                   | 73  | 64  | 64  | 5   |  |
| 5                                    | 5 100 74<br>6 100 100 |     | 65  | 65  | 29  |  |
| 6                                    |                       |     | 66  | 66  | 42  |  |
| 7                                    | 100                   | 100 | 82  | 82  | 43  |  |

#### Contagem do pontos no "mapa de calor de iterações"

#### Casos analisados

PLD Janeiro/2016
PLD Dezembro/2018
PLD Novembro/2020 ONS

- PMO Out/17
- PMO Jan/21
- PMO Jul/14
- PMO Janeiro/2021 condicionado
  - 18 Sensibilidades 3 variações de ENA e 3 variações de EARM para os meses de maio e

dezembro

Pares Considerados para Convergência

| N/Delta | 0,1 | 0,15 | 0,2 | 0,25 | 0,3 | 0,35 | 0,4 | 0,45 | 0,5 |
|---------|-----|------|-----|------|-----|------|-----|------|-----|
| 2       | 3   | 0    | 0   | 1    | 0   | 0    | 0   | 0    | 0   |
| 3       | 10  | 2    | 0   | 0    | 0   | 0    | 0   | 0    | 0   |
| 4       | 11  | 3    | 1   | 0    | 1   | 0    | 0   | 0    | 0   |
| 5       | 10  | 4    | 2   | 0    | 2   | 0    | 1   | 0    | 0   |
| 6       | 10  | 5    | 4   | 1    | 1   | 0    | 1   | 0    | 0   |
| 7       | 11  | 6    | 4   | 2    | 0   | 0    | 0   | 0    | 0   |
| 8       | 11  | 9    | 4   | 4    | 0   | 0    | 1   | 0    | 0   |

Garantia Física Eletrobrás

EPE •

### Agenda

- 1. Contextualização e cronograma
- 2. Análises metodológicas e testes preliminares
- 3. Critério de parada
- 4. Backtests e análises prospectivas: premissas e métricas
- 5. FTs NEWAVE/DECOMP
- 6. Dúvidas, contribuições e comentários

#### Contribuições dos agentes/universidades:

- Estender o período sombra para incluir o ano de 2021;
  - A proposta é fazer simulações sombra para o ano completo de 2022. Para a verificação do ano de 2021 a proposta foi fazer a extensão do backtest até junho/2021, além de estudos pontuais para meses específicos do ano de 2021 com os níveis de armazenamentos originais. De qualquer forma, caso algum agente tenha interesse em colaborar fazendo o período sombra de 2021 as instituições do GT-Metodologia darão todo o suporte necessário.
- Análise do PAR(p)-A com diferentes horizontes passados: hidrologia favorável e desfavorável;
  - A análise para diferentes séries hidrológicas conjunturais está sendo proposta nos estudos prospectivos. A recomendação do agente de incorporar essas diferentes hidrologias também aos períodos passados é pertinente e será incorporada aos estudos prospectivos.

#### Contribuições dos agentes/universidades:

- Avaliar a qualidade da política operativa tendo como referência um modelo de simulação "realista" que leve em consideração o que se observou das entradas exógenas (contribuição completa constará na ata do workshop).
  - A contribuição é pertinente, e para auxílio na resposta sobre como realizar estudos de backtest propomos o esquema:

| Opções                                       | Prós                                           | Contras                                   |  |
|----------------------------------------------|------------------------------------------------|-------------------------------------------|--|
| Utilizar decks vigentes à época              | Pode-se comparar os resultados obtidos         | A comparação dos resultados obtidos pelo  |  |
| considerando os modelos atuais e com as      | entre os modelos, uma vez que todos            | encadeamento dos <b>modelos com o</b>     |  |
| propostas metodológicas em discussão.        | consideram as mesmas premissas. As             | realizado não é direta, uma vez que o     |  |
| Encadear os decks do <i>backtest</i>         | políticas operativas se mantém (geração        | realizado (carga, afluência,) não é o     |  |
| considerando os resultados de cada           | termelétrica, por exemplo) tornando            | mesmo que foi considerado nos modelos.    |  |
| execução.                                    | possível uma comparação com o                  |                                           |  |
|                                              | realizado.                                     |                                           |  |
| Alterar os dados de entrada dos decks do     | Maior proximidade do realizado com o que       | Existe a alteração da política operativa. |  |
| backtest com o que foi observado de          | aconteceu de fato em termos de variáveis       | Despacho termelétrico e PLD realizados    |  |
| variáveis exógenas (carga, afluência e etc.) | exógenas.                                      | não podem ser utilizados como referência. |  |
| Em cada estágio, fazer duas execuções.       | O resultado da simulação é um bom <i>proxy</i> | Exige processos operacionais e uma janela |  |
| Uma para definir a política operativa        | com o realizado, permitindo comparar os        | tempo de processamento maior que o GT     |  |
| (despacho termelétrico) com os decks         | resultados simulados para cada estágio         | Metodologia dispõe para o presente ciclo. |  |
| vigentes à época. Outra simulando os         | com o realizado diretamente.                   |                                           |  |
| decks do <i>backtest</i> com o despacho      |                                                |                                           |  |
| termelétrico definido e com as variáveis     |                                                |                                           |  |
| exógenas atualizadas.                        |                                                |                                           |  |

#### Contribuições dos agentes/universidades:

- Avaliar a qualidade da política operativa tendo como referência um modelo de simulação "realista" que leve em consideração o que se observou das entradas exógenas (contribuição completa constará na ata do workshop).
  - > A contribuição é pertinente, e para auxílio na resposta sobre como realizar estudos de backtest propomos o esquema:

| 2 1                                          | / 1                                            |                                           | · ·                               |
|----------------------------------------------|------------------------------------------------|-------------------------------------------|-----------------------------------|
| Opcões                                       | Prós                                           | Contras                                   |                                   |
| Utilizar decks vigentes à época              | Pode-se comparar os resultados obtidos         | A comparação dos resultados obtidos pelo  | A comparação com                  |
| considerando os modelos atuais e com as      |                                                | encadeamento dos m <b>odelos com o</b>    | politica operativa de             |
| propostas metodológicas em discussão.        | consideram as mesmas premissas. As             | realizado não é direta, uma vez que o     | <b>longo prazo é válida</b> , uma |
| Encadear os decks do <i>backtest</i>         | políticas operativas se mantém (geração        | realizado (carga, afluência,) não é o     | vez que <b>não se identifica</b>  |
| considerando os resultados de cada           | termelétrica, por exemplo) tornando            | mesmo que foi considerado nos modelos.    | <b>viés sistemático</b> nos       |
| execução.                                    | possível uma comparação com o                  |                                           | dados de entrada.                 |
|                                              | realizado.                                     | Solução                                   | o utilizada atualmente 🌙          |
| Alterar os dados de entrada dos decks do     | Maior proximidade do realizado com o que       | Existe a alteração da política operativa. |                                   |
| backtest com o que foi observado de          | aconteceu de fato em termos de variáveis       | Despacho termelétrico e PLD realizados    |                                   |
| variáveis exógenas (carga, afluência e etc.) | exógenas.                                      | não podem ser utilizados como referência. |                                   |
| Em cada estágio, fazer duas execuções.       | O resultado da simulação é um bom <i>proxy</i> | Exige processos operacionais e uma janela | <b>"</b> 2                        |
| Uma para definir a política operativa        | com o realizado, permitindo comparar os        | tempo de processamento maior que o GT     | "Solução ideal" a ser             |
| (despacho termelétrico) com os decks         | resultados simulados para cada estágio         | Metodologia dispõe para o presente ciclo. | estudada em ciclos                |
| vigentes à época. Outra simulando os         | com o realizado diretamente.                   |                                           | futuros.                          |
|                                              |                                                |                                           |                                   |

CPAMP - Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico GT METODOLOGIA

decks do *backtest* com o despacho termelétrico definido e com as variáveis

exógenas atualizadas.

## Backtest e análises prospectivas - Definição após contribuições iniciais dos agentes

| Metodologia                        | <ul> <li>Seleção dos pares a partir de resultados nos modelos NEWAVE-DECOMP-DESSEM<br/>("Análise paretos")</li> <li>Próxima reunião</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Premissas backtest                 | <ul> <li>Backtest encadeado para casos de PMO</li> <li>Período de simulação: Dez/2015 a Jun/2021</li> <li>2 bases (PAR(p) / PAR(p)-A e risco atual) + 4 sensibilidades de parâmetros do CVaR</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Premissas análises<br>prospectivas | <ul> <li>Casos de PLD</li> <li>2 bases (PAR(p) / PAR(p)-A e risco atual) + 4 sensibilidades de parâmetros do CVaR</li> <li>Período de simulação: Dez/2021 a Nov/2022</li> <li>4 cenários hidrológicos, com volumes iniciais diferentes <ul> <li>120% MLT – EARM inicial = equivalente dez/2011</li> <li>60% MLT – EARM inicial = equivalente dez/2011</li> <li>80% MLT – EARM inicial = equivalente dez/2020</li> <li>60% MLT – EARM inicial = equivalente dez/2020</li> </ul> </li> <li>Premissas: <ul> <li>Se disponível na data corte utilizar os dados de cadastro das UHEs do 2º ciclo do GTDP</li> </ul> </li> <li>Restrições hidráulicas ordinárias (não flexibilizadas) - Deck vigente outubro/2021</li> <li>Execução sem corte de carga (sem déficit)</li> </ul> |

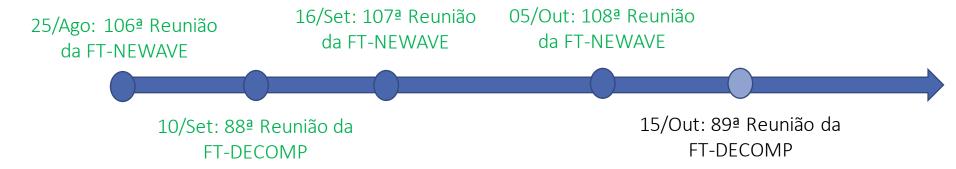


Início da Etapa 2

#### Backtest e análises prospectivas - Definição após contribuições iniciais dos agentes

| Métricas físicas     | <ul> <li>Energia Armazenada</li> <li>Geração térmica/hidráulica</li> <li>Índice de Eficiência (Custo x EARM)</li> <li>Vertimento</li> </ul>                                                                                                                                                                                                                                                                                                                                                   | A 4 4 5 5 5 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Métricas financeiras | <ul> <li>CMO/PLD e volatilidade</li> <li>Custos do despacho térmico</li> <li>GSF e impacto no MRE</li> <li>Impacto na Garantia Física</li> <li>Impacto no Planejamento da Expansão (Análise de Requisitos)</li> <li>Impacto nas distribuidoras</li> <li>Impacto tarifário <ul> <li>GSF (risco hidrológico)</li> <li>CCEAR-D (contrato de disponibilidade)</li> <li>Encargo de energia de reserva (ERR)</li> <li>Exposição da distribuidora no MCP (balanço contratual)</li> </ul> </li> </ul> | 5           |




Final da Etapa 2

### Agenda

- 1. Contextualização e cronograma
- 2. Análises metodológicas e testes preliminares
- 3. Critério de parada
- 4. Backtests e análises prospectivas: premissas e métricas
- 5. FTs NEWAVE/DECOMP
- 6. Dúvidas, contribuições e comentários

FTs NEWAVE/DECOMP Em andamento

Setembro a 15/Outubro



#### **FT NEWAVE**

Validar a versão 27.4.13 (PAR(p)-A exatona formulação da PDDE)

#### **FT DECOMP**

• Validar a versão 30.15 (ajuste da leitura do número de cortes vindo do NW de 30.000; ajuste da leitura do arquivo vazoes.rvx para 600 postos)



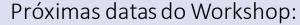
Pouca participação dos agentes na execução dos testes!!!

### Agenda

- 1. Contextualização e cronograma
- 2. Análises metodológicas e testes preliminares
- 3. Critério de parada
- 4. Backtests e análises prospectivas: premissas e métricas
- 5. FTs NEWAVE/DECOMP
- 6. Dúvidas, contribuições e comentários

#### Dúvidas, contribuições e comentários




- Definição do critério de parada
- Definição das premissas e métricas backtest e análises prospectivas
- Outras contribuições técnicas

Solicitar a abertura do microfone pelo ícone



#### Próximos passos

- Workshop 20/outubro:
  - Conclusão das atividades da Etapa 1
  - Resultados das simulações para o conjunto de parâmetros do CVaR Definição dos 4 pares para sensibilidade dos backtests e análises prospectivas





- 20/10 9h às 11h
- 10/11 9h às 11h
- 13/12 15h às 17h







Dúvidas e contribuições podem ser enviadas para **gtmet.cpamp@ccee.org.br** 

CPAMP - Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico GT METODOLOGIA

# Obrigado

Coordenação do GT Metodologia: gtmet.cpamp@ccee.org.br



CPAMP - Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico

MINISTÉRIO DE MINAS E ENERGIA







Assessoria Técnica:

