Workshop GT Metodologia/CPAMP

Ciclo 2021/2022: PAR(p)-A + Calibração do CVaR

10/11/2021

MINISTÉRIO DE MINAS E ENERGIA

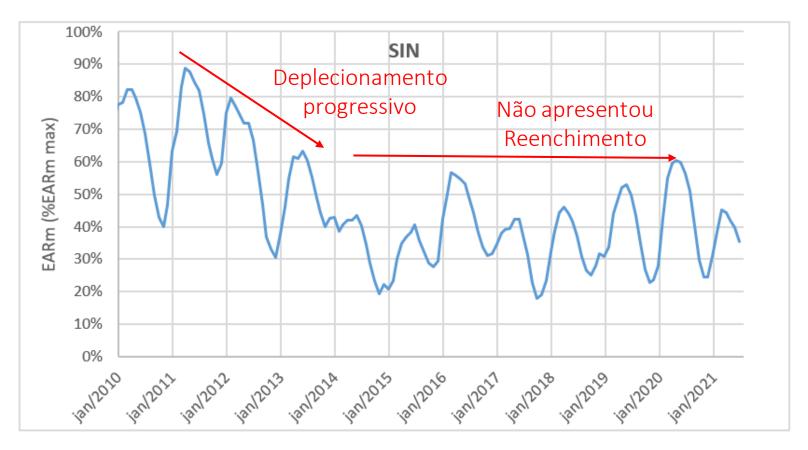
Membros:

- 1. Contextualização e cronograma
- 2. Atividades da 1ª Etapa
- 3. Backtests e análises prospectivas
- 4. Dúvidas, contribuições e comentários

- 1. Contextualização e cronograma
- 2. Atividades da 1ª Etapa
- 3. Backtests e análises prospectivas
- 4. Dúvidas, contribuições e comentários

Contextualização

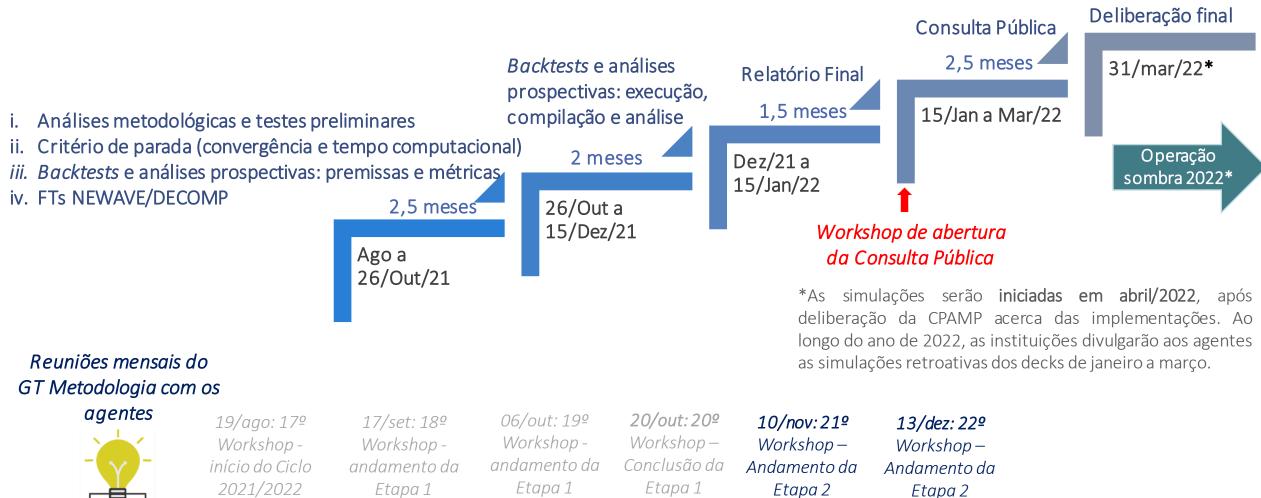
Recomendação do CMSE à CPAMP (234ª Reunião - 02/set/2020)


• Avaliar os mecanismos visando a **elevação estrutural dos níveis de armazenamento** dos reservatórios, sobretudo aos **finais dos períodos secos**, bem como propor uma transição capaz de **minimizar os impactos no GSF e na tarifa do consumidor** de energia elétrica.

Deliberação da CPAMP, publicada em 23/jul/2021¹

- "Entre as principais motivações para os aperfeiçoamentos propostos consta a necessidade identificada de se melhorar a representação da realidade operativa do Sistema Interligado Nacional (SIN) nos modelos, e proporcionar o adequado sinal econômico do PLD e justa alocação dos custos para os diversos segmentos. (...)
- A CPAMP manteve o compromisso de **validação do PAR(p)-A no primeiro trimestre de 2022, associada à calibração do CVaR**, para atualização da **representação da aversão ao risco mais aderente à realidade operativa** do SIN. Essas mudanças, nos termos da Resolução CNPE nº 7/2016, só terão eficácia na operação e na formação de preços **a partir de 2023**."

¹https://www.gov.br/mme/pt-br/assuntos/noticias/cpamp-decide-sobre-implementacao-de-aprimoramentos-propostos-nos-modelos-computacionais-no-ciclo-de-atividades-2019-2020-2021


Contextualização

Próximos ciclos

• Continuidade dos demais temas (produtibilidade e perdas variáveis, taxa de desconto, SUISHI hidrotérmico, fontes intermitentes, NEWAVE híbrido, *unit commitment* hidráulico)

Cronograma

Cronograma

Reuniões mensais do GT Metodologia com os

19/ago: 17º Workshop início do Ciclo 2021/2022 17/set: 18º Workshop andamento da Etapa 1 06/out: 19º Workshop andamento da Etapa 1 **20/out: 20º** Workshop – Conclusão da Etapa 1

10/nov: 21º Workshop – Andamento da Etapa 2 **13/dez: 22º** Workshop – Andamento da Etapa 2

CPAMP - Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico GT METODOLOGIA

- 1. Contextualização e cronograma
- 2. Atividades da 1ª Etapa
- 3. Backtests e análises prospectivas
- 4. Dúvidas, contribuições e comentários

Análises metodológicas e testes preliminares Concluído

- Análise da formulação exata do PAR(p)-A na PDDE (Relatório Técnico CEPEL nº 1941/2021);
 - Buscando também um alinhamento com instituições de pesquisa para auxiliar nas análises.
 - Conduzida uma análise detalhada do Relatório Técnico e enviado comentários ao CEPEL. Concluído
- Testes do novo modelo NEWAVE: o ajuste da metodologia PAR(p)-A foi na PDDE, não devendo impactar na geração de cenários:
 - Testes para conferência da proposta metodológica;
 - Para os testes de sanidade, a CPAMP irá recepcionar versão do CEPEL com as saídas que propiciem fazer o recálculo dos coeficientes da FCF. Concluído
 - Testes de **sanidade dos arquivos de saída** da nova implementação; Concluído
- Resultados para casos de planejamento da expansão, cálculo da garantia física, operação e formação do PLD: Concluído
 - Comparação dos resultados obtidos com PAR(p) e PAR(p)-A, considerando o mesmo número de iterações e simulação final com série histórica;
 - Análise da **resposta do modelo** (energia armazenada, geração térmica/hidráulica, outros).

Critério de Parada Em conclusão

Critério de parada atual

3 iterações abaixo de 0,2% de ΔZinf

Critério de parada proposto

Concluído

• 6 iterações abaixo de 0,1% de ΔZinf

Limite de iterações atual

- Mínimo de 30 iterações
- Máximo de **45** iterações

Limite de iterações proposto

Concluído

- Mínimo de 30 iterações
- Máximo de 50 iterações

Limite de iterações atual para casos de PDE

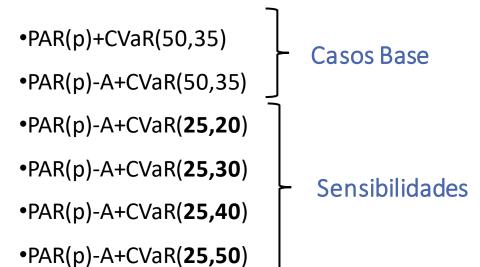
- Mínimo de **45** iterações
- Máximo de **45** iterações

Em conclusão

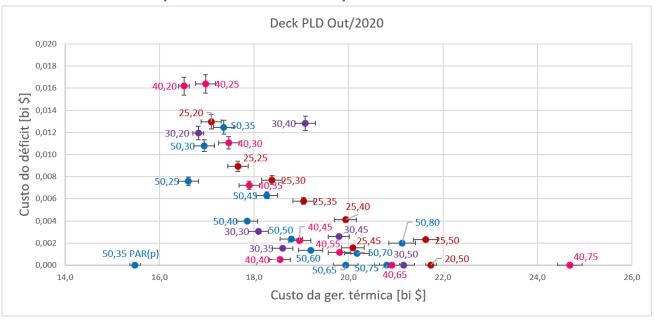
Limite de iterações atual para casos de PDE e GF

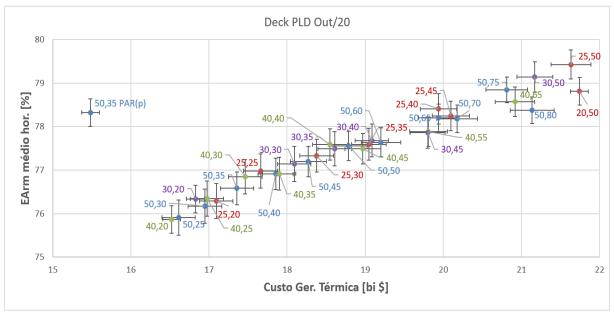
Em análise

Backtests e prospectivos: premissas Concluído

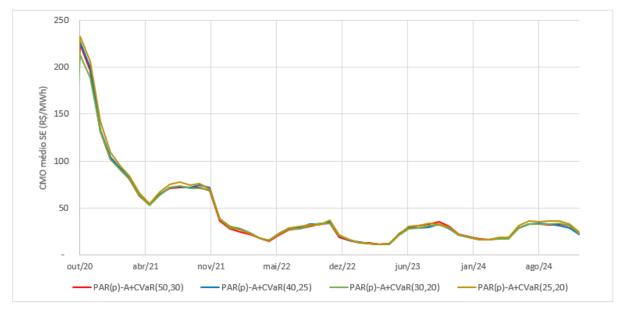

Backtests

- Backtest encadeado para casos de PMO
- Período de simulação: Dez/2015 a Jun/2021


Prospectivos

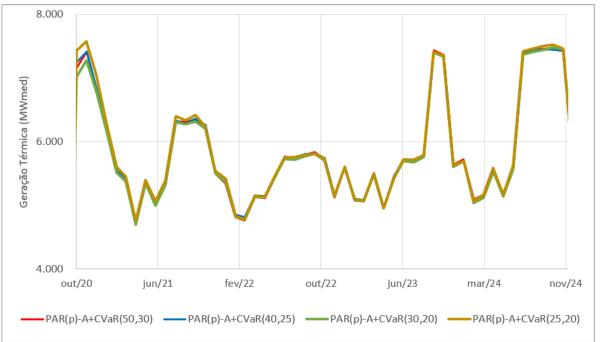

- Casos de PLD
- Período de simulação: Dez/2021 a Nov/2022
- 4 cenários hidrológicos (**passado e futuro**), com volumes iniciais diferentes
 - 120% MLT flat EARM inicial = equivalente dez/2011
 - 60% MLT flat EARM inicial = equivalente dez/2011
 - 80% MLT **flat** EARM inicial = equivalente dez/2020
 - 60% MLT **flat** EARM inicial = equivalente dez/2020

Pares de CVaR a serem simulados:


Estudo de equivalência entre pares de CVaR - Deck de PLD - Out/2020 - Paretos

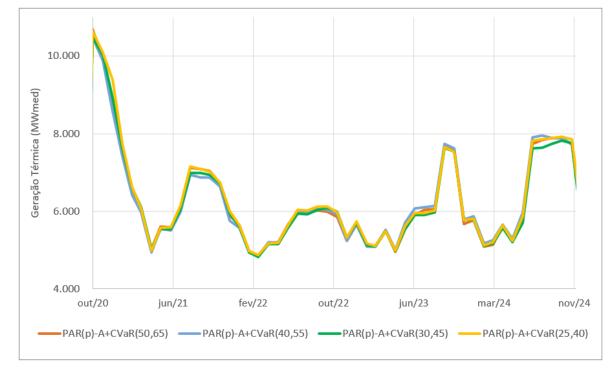
25,20	25,25	25,30	25,35	25,40	25,45	25,50
30,20	30,30	30,30	30,35	30,45	30,45	30,50
40,25	40,30	30,35	30,40	40,55	40,55	
40,30	40,35	40,40	40,45	50,65	50,65	
50,30	50,35	50,45	50,50	50,70	50,70	
50,35	50,40	50,50	50,60			

Estudo de equivalência entre pares de CVaR - Deck de PLD - Out/2020 - Trajetória CMO SE

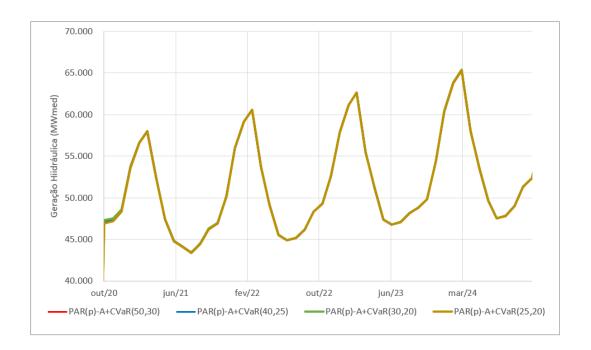


Médias Anuais	2020	2021	2022	2023	2024
PAR(p)-A+CVaR(50,65)	409	105	33	28	34
PAR(p)-A+CVaR(40,55)	394	98	33	33	36
PAR(p)-A+CVaR(30,45)	388	100	35	27	31
PAR(p)-A+CVaR(25,40)	378	106	37	29	36

Médias Anuais	2020	2021	2022	2023	2024
PAR(p)-A+CVaR(50,30)	184	71	25	23	25
PAR(p)-A+CVaR(40,25)	187	72	27	21	25
PAR(p)-A+CVaR(30,20)	178	71	26	21	25
PAR(p)-A+CVaR(25,20)	194	74	27	22	27

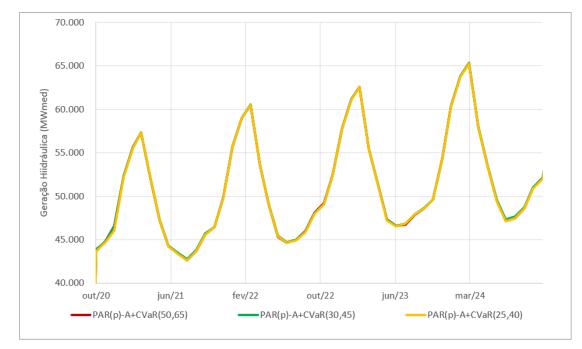


Estudo de equivalência entre pares de CVaR - Deck de PLD - Out/2020 - Trajetória de GT

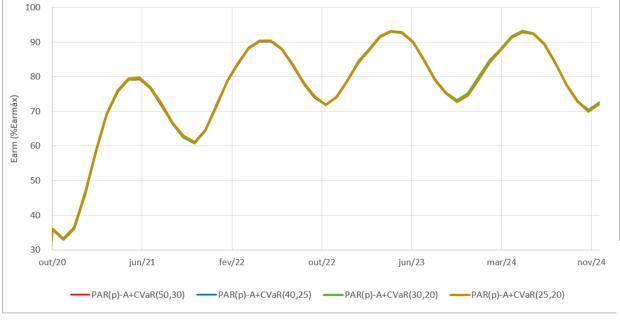


Médias Anuais	2020	2021	2022	2023	2024
PAR(p)-A+CVaR(50,30)	7.116	5.686	5.383	5.774	6.272
PAR(p)-A+CVaR(40,25)	7.162	5.707	5.404	5.774	6.251
PAR(p)-A+CVaR(30,20)	7.031	5.671	5.377	5.759	6.245
PAR(p)-A+CVaR(25,20)	7.353	5.742	5.396	5.774	6.282

Médias Anuais	2020	2021	2022	2023	2024
PAR(p)-A+CVaR(50,65)	9.830	6.363	5.549	5.902	6.472
PAR(p)-A+CVaR(40,55)	9.641	6.238	5.550	5.962	6.541
PAR(p)-A+CVaR(30,45)	9.804	6.338	5.545	5.888	6.406
PAR(p)-A+CVaR(25,40)	10.030	6.397	5.592	5.919	6.520

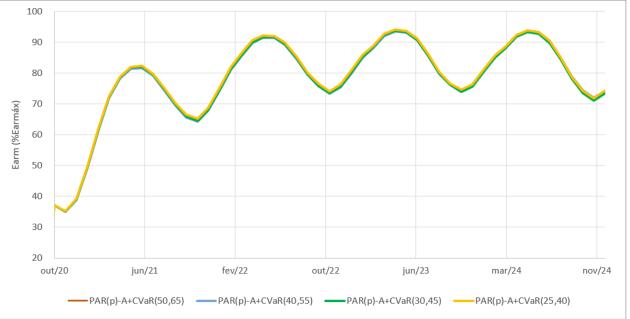


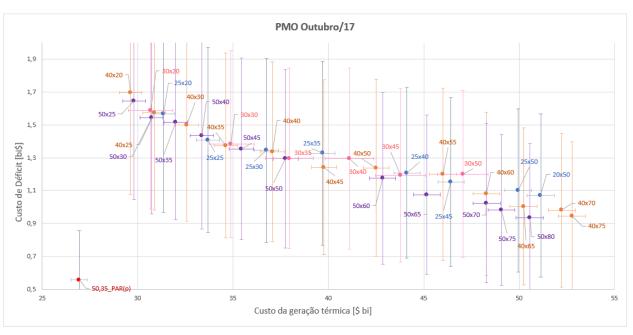
Estudo de equivalência entre pares de CVaR - Deck de PLD - Out/2020 - Trajetória GH

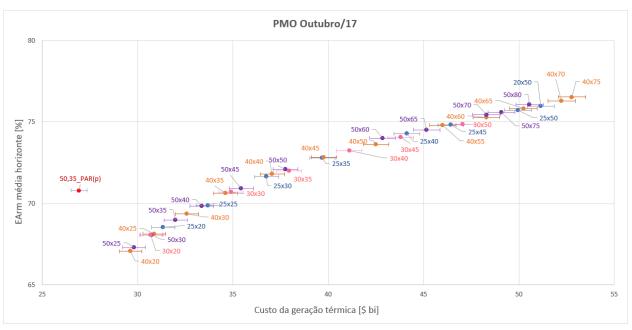


Médias Anuais	2020	2021	2022	2023	2024
PAR(p)-A+CVaR(50,30)	47.737	49.045	50.884	52.562	54.636
PAR(p)-A+CVaR(40,25)	47.691	49.023	50.862	52.563	54.657
PAR(p)-A+CVaR(30,20)	47.822	49.059	50.889	52.577	54.663
PAR(p)-A+CVaR(25,20)	43.765	47.836	50.499	52.402	54.281

Médias Anuais	2020	2021	2022	2023	2024
PAR(p)-A+CVaR(50,65)	45.022	48.368	50.717	52.435	54.436
PAR(p)-A+CVaR(40,55)	45.212	48.493	50.717	52.374	54.367
PAR(p)-A+CVaR(30,45)	45.048	48.393	50.722	52.449	54.505
PAR(p)-A+CVaR(25,40)	44.822	48.334	50.674	52.418	54.389


Estudo de equivalência entre pares de CVaR - Deck de PLD - Out/2020 - Trajetória da EARM


	40 30 out/20 j	jun/21 fe	v/22 out/2:	2 jun/23	mar/24	nov/2
——PAR(p)-A+CVaR(50,30) ——PAR(p)-A+CVaR(40,25) ——PAR(p)-A+CVaR(30,20) ——PAR(p)-A+CVaR(25,20)		-				


Médias Anuais	2020	2021	2022	2023	2024
PAR(p)-A+CVaR(50,65)	37	71	83	85	84
PAR(p)-A+CVaR(40,55)	37	70	83	85	84
PAR(p)-A+CVaR(30,45)	37	71	83	85	83
PAR(p)-A+CVaR(25,40)	37	71	83	85	84

Médias Anuais	2020	2021	2022	2023	2024
PAR(p)-A+CVaR(50,30)	35	68	81	84	83
PAR(p)-A+CVaR(40,25)	35	68	81	84	83
PAR(p)-A+CVaR(30,20)	35	68	81	84	83
PAR(p)-A+CVaR(25,20)	35	68	81	84	83

Equivalência entre pares de CVaR - Deck de PMO - Out/2017

25,20	25,25	25,30	25,35	25,40	25,45	25,50
30,20	30,30	30,35		30,45	30,50	
40,25	40,35	40,40	40,45		40,55	40,65
50,30	50,40	50,50		50,60	50,65	50,70
50,35				50,65		50,80


Conclusão

No estudo de pares de equivalência apresentado, nota-se empiricamente que pares de CVaR de uma dada família α podem ser representados por outras famílias através do ajuste do peso λ correspondente

Contribuições dos agentes/universidades:

- Incluir nos testes da 2ª Etapa os pares (50,40), (50,45) e (50,50).
 - Devido ao prazo que temos para a fase de execuções de Backtest e Prospectivos, cerca de dois meses, propomos a escolha de uma família de par de CVaR que represente uma ampla gama de aversões ao risco. Nas análises da primeira etapa, notou-se que a família α = 25% consegue oferecer uma abrangência de aversões ao risco, além de trazer uma maior representatividade da cauda das distribuições. No estudo de pares de equivalência apresentado, nota-se empiricamente que pares de uma dada família podem ser representados por outras famílias através do ajuste do peso λ correspondente. Portanto, a depender da evolução das execuções, caso seja necessário um refinamento nos pares para aversões ao risco, isso poderá ser feito posteriormente através de uma escolha de um peso λ intermediário, mantendo o α = 25%.

FTs NEWAVE/DECOMP Em conclusão

FT NEWAVE Em conclusão

- Versão 27.4.14 validada com ressalva devido a não impressão dos arquivos com os dados necessários para conferência do cálculo dos coeficientes dos cortes de Benders associados as afluências passadas em determinadas configurações de cluster.
- Versão 27.4.15 que soluciona a impressão dos arquivos de batimento da FCF em validação. Previsão de conclusão 19/11.

FT DECOMP Finalizada

Validada a versão 30.16

Pouca participação dos agentes na execução dos testes!!!

- 1. Contextualização e cronograma
- 2. Atividades da 1ª Etapa
- 3. Backtests e análises prospectivas
- 4. Dúvidas, contribuições e comentários

Premissas e modificações nos modelos para os estudos prospectivos

NEWAVE

- Atualização dos novos dados do GT-DP
 - Hidr.dat: Produtibilidade específica, perdas hidráulicas, níveis de jusante (polinômios e valores médios), nível do montante e canal de fuga para usinas fio d'água.
 - Modif.dat: CMONT e CFUGA das UHEs Sto. Antônio, Jirau e Tucuruí.
- Modif.dat: retirada do mnemônico "Vminp" das usinas que tinham essa variável modelada.
- Penalid.dat: retirada dos valores de penalidade dos REEs, 1, 3 e 4.
- Curva.dat: Inclusão dos novos níveis de VminOp nos REEs, Sudeste, Paranapanema e Paraná (20%), Iguaçu e Sul (30%), Norte (20,8% - 18% em dezembro do primeiro ano) e Nordeste (23,5%).
- Curva.dat: Penalidade ajustada em 2.832,70 R\$/MWh. (1+taxDesc)^(11/12) *
 MaxCVU. taxDesc=12% MaxCVU= 2.553,20 R\$/MWh (UTE Araucária) Portaria
 MME N

 300.
- Regras de operação definidas pela ANA para o rio São Francisco e o Tocantins.
 - Três Marias, Sobradinho e Xingó.
 - Serra da mesa.
- Inclusão do PAR(p)-A e mudança no critério de parada (casos sensibilidade):
 - dger.dat: flag 3 0 habilitada
 - **dger.dat**: campo "No. MAX. ITER" alterado para 50 e campos "DELTA ZINF" e "DELTAS CONSECUT." alterados para 0.1 e 6, respectivamente
- Vazpast.dat: Flat entre Dez/20 e Dez/21.
- **Dger.dat**: volume inicial por REE definido pelo deck de partida simulado.

DECOMP

- Atualização dos novos dados do GT-DP
 - **Hidr.dat**: Produtibilidade específica, perdas hidráulicas, níveis de jusante (polinômios e valores médios), nível do montante e canal de fuga para usinas fio d'água.
 - Polinjus.dat: polinômios de jusante por partes (inserido o registro FJ no dadger.xx).
 - **VERTJU:** alteração para flat 1 no bloco cadastral (AC) de algumas usinas devido aos novos polinômios de jusante.
- Restrições de energia armazenada mínima (RHE)
 - Inclusão dos novos níveis de VminOp nos REEs, Sudeste, Paranapanema e Paraná (20%), Iguaçu e Sul (30%), Norte (20,8%) e Nordeste (23,5%).
 - Penalidade ajustada em 2.570 (2.565,96) R\$/MWh. (1,005) * MaxCVU.
 MaxCVU = 2.553,20 R\$/MWh (UTE Araucária). Como era feito na CAR.
- Vazões: arquivo vazoes.<u>rvx</u> substituído pelo gerado com a versão 8.1.6 do GEVAZP. Quando rodado com PAR(p)-A habilita flag 01 na geração de cenários.
- Regras de operação definidas pela ANA para o rio São Francisco e o Tocantins.
 - Três Marias, Sobradinho e Xingó.
 - Serra da mesa.
- dadger.rvx: volume inicial por UHE definido pelo deck de partida simulado.

Premissas e modificações nos modelos para os estudos backtests

NEWAVE

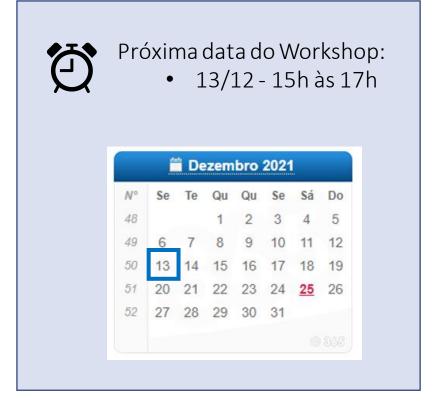
- Atualização dos novos dados do GT-DP
 - hidr.dat: Produtibilidade específica, perdas hidráulicas, níveis de jusante (polinômios e valores médios), nível do montante e canal de fuga para usinas fio d'água.
 - modif.dat: CMONT e CFUGA das UHEs Sto. Antônio, Jirau e Tucuruí.
- Alterações nas penalidades e na curva de aversão:
 - modif.dat: retirada do mnemônico "VMINP" das usinas que tinham essa variável modelada.
 - penalid.dat: retirada dos valores de penalidade do tipo VOLMIN.
 - curva.dat: Inclusão dos novos níveis de VminOp nos REEs, Sudeste, Paranapanema e Paraná (20%), Iguaçu e Sul (30%), Norte (20,8% - 18% em dezembro do primeiro ano) e Nordeste (23,5%).
 - curva.dat: Penalidade ajustada considerando maior CVU dentre as térmicas disponíveis no horizonte do deck do NEWAVE: (1+taxDesc)^(11/12) * MaxCVU. taxDesc=12%, Portaria MME Nº 300.
- Inclusão do PAR(p)-A e atualização do critério de parada (casos de sensibilidade):
 - dger.dat: campo de "AFLUENCIA ANUAL PARP" com valores 3, 0
 - **dger.dat**: campo "No. MAX. ITER" alterado para 50 e campos "DELTA ZINF" e "DELTAS CONSECUT." alterados para 0.1 e 6, respectivamente
- Adaptações necessárias em decks antigos para compatibilizar com os atuais:
 - Compatibilização 12 REEs: alterações no ree.dat, confhd.dat.
 - Compatibilização dos confhd.dat e exph.dat, quando necessário, devido ao valores atualizados no novo hidr.dat.
 - Compatibilizado com as configurações atuais do **dger.dat**: ex. não consideração do racionamento preventivo, seleção de cortes, reamostragem.
 - Custo de déficit em 1 patamar no **sistema.dat**: transformado, quando necessário, de 4 para 1 patamar de custo de déficit, com os seguintes custos: R\$ 3250 (2015), R\$ 4000 (2016), R\$ 4650 (2017).

DECOMP

- Atualização dos novos dados do GT-DP
 - hidr.dat: Produtibilidade específica, perdas hidráulicas, níveis de jusante (polinômios e valores médios), nível do montante e canal de fuga para usinas fio d'água.
 - polinjus.dat: polinômios de jusante por partes (inserido o registro FJ no dadger.xx)
- Restrições de energia armazenada mínima (RHE) no dadger.xx:
 - Inclusão dos novos níveis de VminOp nos REEs, Sudeste, Paranapanema e Paraná (20%), Iguaçu e Sul (30%), Nordeste (23,5%) e Norte (20,8% jan a nov/18% dez).
 - Penalidades ajustadas considerando maior CVU dentre as térmicas disponíveis no horizonte do deck do Decomp = (1,005) * MaxCVU, arredondado para o múltiplo de 10 superior mais próximo, como era feito na CAR.
- Vazões: arquivo vazoes.xx substituído pelo gerado com a versão 8.1.6 do GEVAZP.
- Adaptações necessárias no **dadger.xx** de decks antigos para compatibilizar com os atuais:
 - Custo de déficit em 1 patamar: bloco CD transformado, quando necessário, de 4 para 1 patamar de custo de déficit, considerando os seguintes custos: R\$ 3250 (2015), R\$ 4000 (2016), R\$ 4650 (2017). Nos demais anos, o custo de déficit de 1 patamar foi mantido conforme decks oficiais.
 - Compatibilização com 12 REEs: bloco RQ (Vazão defluente mínima histórica) incluindo os REEs 5 a 12 quando ausentes, considerando 100% da vazão mínima do histórico para os estágios semanais e 0% para o estágio mensal, assim como é feito nos decks atuais.
 - Evaporação Linear: registro EV flag 1, considerando modelo linear.
 - Retirados os registros *EA, ES e QI*, pois foram descontinuados.

- 1. Contextualização e cronograma
- 2. Atividades da 1ª Etapa
- 3. Backtests e análises prospectivas
- 4. Dúvidas, contribuições e comentários

Dúvidas, contribuições e comentários


- Critério de parada
- Pares de CVaR
- Backtests e prospectivos
- Outras contribuições técnicas

Solicitar a abertura do microfone pelo ícone

Próximos passos

- Contribuições dos agentes até dia 19/novembro
- Workshop **13/dezembro**:
 - Apresentação CEPEL: alinhamento sobre a modelagem dos REEs no NEWAVE
 - Andamento dos estudos Prospectivos e Backtests

Dúvidas e contribuições podem ser enviadas para gtmet.cpamp@ccee.org.br

Obrigado

Coordenação do GT Metodologia: gtmet.cpamp@ccee.org.br

CPAMP - Comissão Permanente para Análise de Metodologias e Programas Computacionais do Setor Elétrico

MINISTÉRIO DE MINAS E ENERGIA

Assessoria Técnica:

