

GT Representação de Cenários Hidrológicos

9ª Reunião com agentes GT CH – SMAP 1º mês Subcomitê Temático para Modelos Satélites

11/05/2023

Introdução

Proposta

Desempenho das previsões

Simulações no modelo DECOMP

Estudo e premissas

Custo Marginal da Operação

Volatilidade

Geração Hidráulica e Térmica

Impactos no DESSEM

Cronograma

Próximos passos

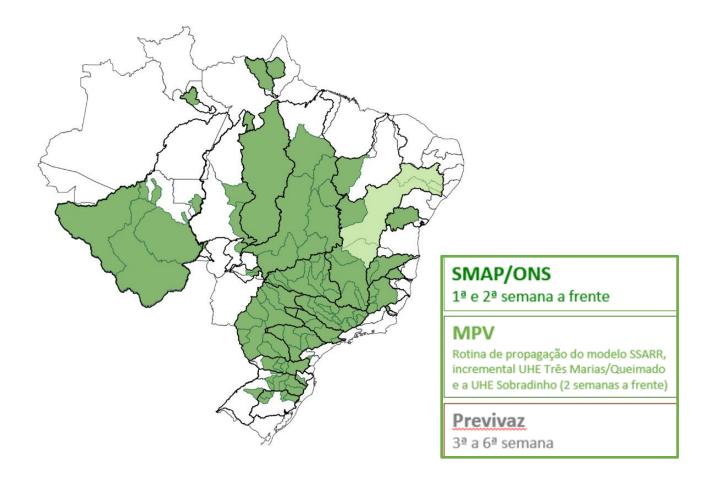
Atividade 1 - Uso do modelo SMAP/ONS em horizonte estendido no modelo DECOMP (1º mês operativo)

Cenário atual

Percentual de uso dos modelos SMAP/ONS para previsão de vazões da 1ª e 2ª semana operativa por submercado:

 Sudeste/CO:
 100%

 Sul:
 100%


 Nordeste:
 97%

 Norte:
 100%

 SIN:
 99,7%

Objetivo

Expandir o horizonte do modelo de previsão de vazões diárias atualmente em uso, para a previsão de vazões de todo o 1º mês operativo.

Contextualização

Atividades: GT Dados Hidrometeorológicos (HM) e Cenários Hidrológicos (CH)

Previsão de precipitação: 3º a 6º semana operativa **ECMWF 51 membros**

GT HM

- Remoção de viés (Quantile Mapping)
- Clusterização de cenários (10 clusters)

Execução do SMAP: 3ª a 6ª semana operativa

Uso do modelo SMAP/ONS em horizonte estendido no
modelo DECOMP (1º mês operativo)

https://ctpmopld.org.br/group/ct-pmo-pld/gt-dados-hidrometeorológicos

Proposta

Metodologias avaliadas:

Vigente

• Proposta: SMAP 1º mês

Sem 1 Sem 2 Sem 3 Sem 4 Sem 5 Sem 6

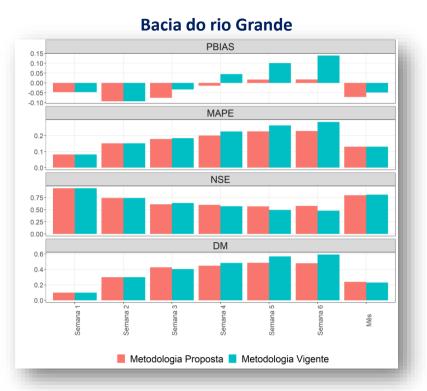
SMAP (Precipitação prevista: ECMWF)

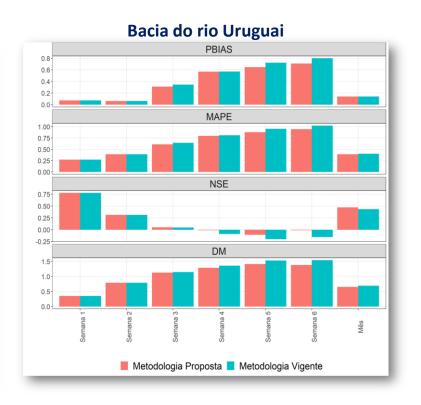
Dados de precipitação prevista

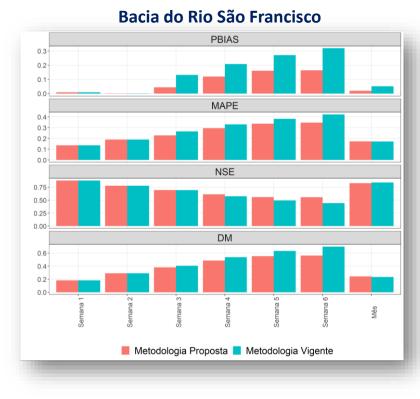
D+0 ao D+14 Pmed ETA40 + GEFS (2017 e 2018) e ECMWF (a partir de 2019)

SMAP (P prevista)

D+15 Previsões estendidas do ECMWF


Período do estudo


Foram feitas simulações a partir do PMO de junho/2017 até o dezembro/2021



- A metodologia proposta, expansão do horizonte de previsão do modelo SMAP/ONS para o 1º mês operativo, apresentou resultados superiores ou em mesmo nível, em relação a metodologia vigente para a maioria das bacias.
- As exceções ocorreram para as bacias dos rios Madeira, Xingu, Teles Pires, Jari e Parnaíba.

Bacia Hidrográfica	Semana 1	Semana 2	Semana 3	Semana 4	Semana 5	Semana 6	Mês
Grande							
Paranaíba							
Tietê							
Paranapanema							
Paraná							
Iguaçu							
Uruguai							
Outras Sul							
São Francisco							
Tocantins							
Xingu							
Teles Pires							
Madeira							
Jari							
Uatumã							
Mucuri							
Curuá-Una							
Araguari							
Paraguai							
Doce							
Parnaíba							
Jequitinhonha							
Paraguaçu							

- Proposta melhor que a vigente
- Vigente melhor que a proposta

- A metodologia proposta, expansão do horizonte de previsão do modelo SMAP/ONS para o 1º mês operativo, apresentou resultados superiores ou em mesmo nível, em relação a metodologia vigente para a maioria das bacias.
- As exceções ocorreram para as bacias dos rios Madeira, Xingu, Teles Pires, Jari e Parnaíba.

Simulações Modelo DECOMP SMAP 1º mês operativo

Backtest: Junho/2017 a dezembro/2021

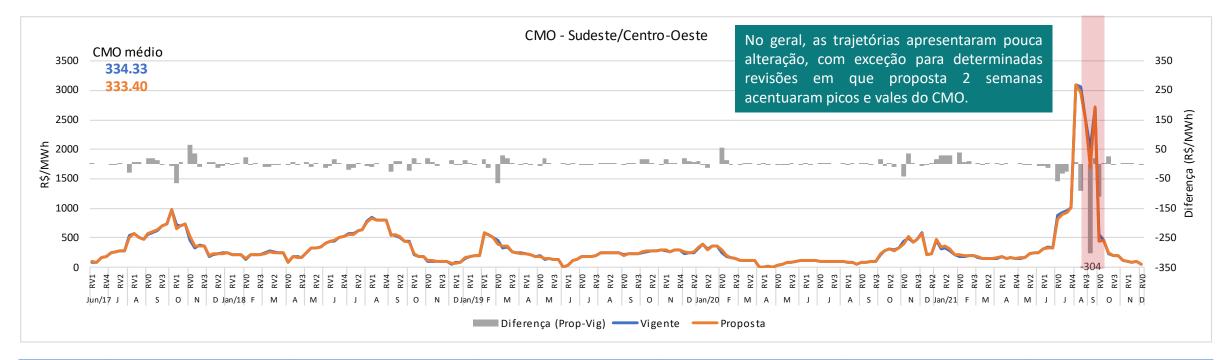
Subcomitê Temático para Modelos Satélites

Rodadas de DECOMP

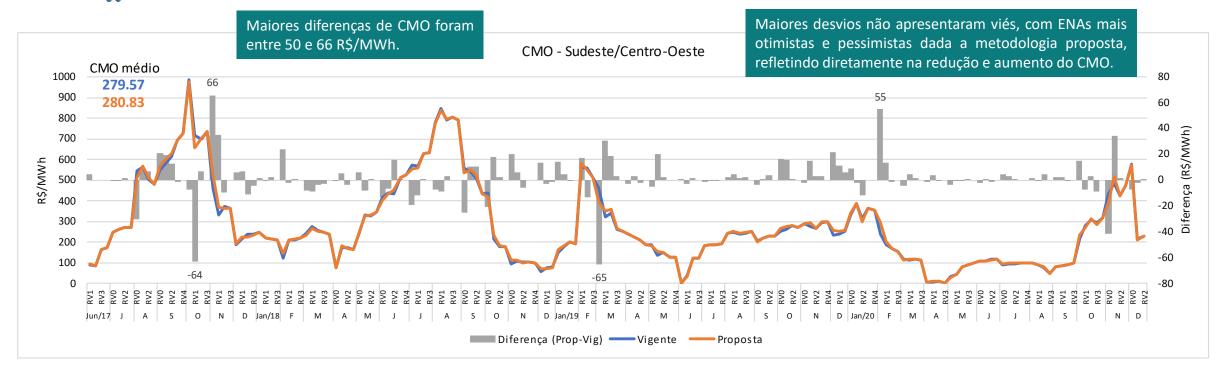
- Estudo não encadeado
- Versão 31
- Período de estudo: junho/2017 a dezembro/2021 (226 revisões executadas)
- Casos: Vigente x Proposta
 - Vigente: SMAP 2 semanas + Previvaz
 - **Proposta:** SMAP 6 semanas

Análises de impacto

- CMO
 - Volatilidade
 - Impacto por revisões
- Geração hidráulica e térmica
- DESSEM

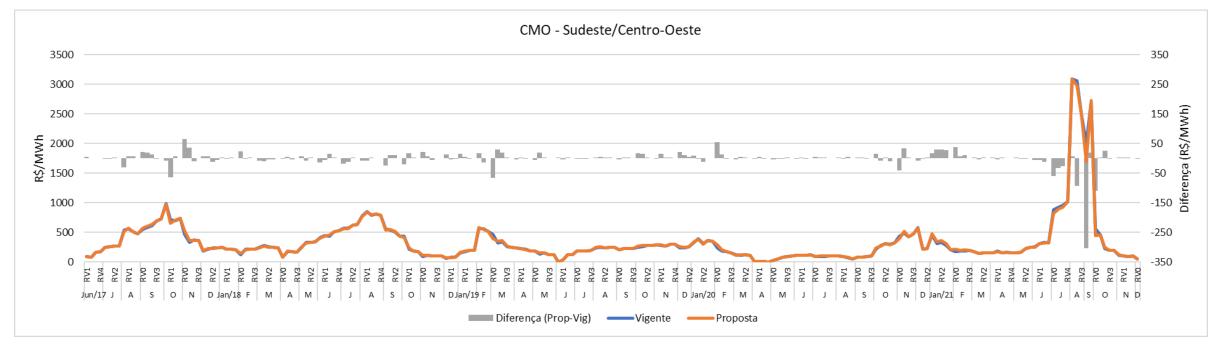


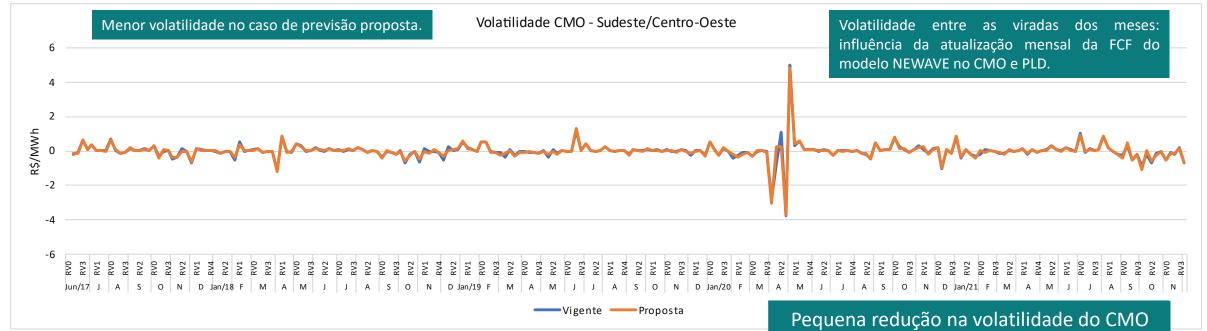
D¢/N/NA/L	2017		2018		2019		2020		2021		Total	
R\$/MWh	Vig.	Prop.	Vig.	Prop.	Vig.	Prop.	Vig.	Prop.	Vig.	Prop.	Vig.	Prop.
Média	425.77	427.98	337.80	337.34	237.94	240.37	179.03	180.30	554.55	544.87	334.33	333.40
Diferença	2.21 ((0.52%)	-0.46 (-	0.14%)	2.43 (1	1.02%)	1.27 ((0.71%)	-9.68 (-	-1.75%)	-0.92 (-	-0.28%)
Desv. pad	232.19	230.43	223.78	221.12	108.16	106.90	142.37	142.52	803.43	784.96	411.62	402.87



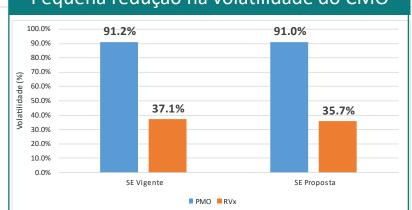
Sudeste/Centro-Oeste

CMO

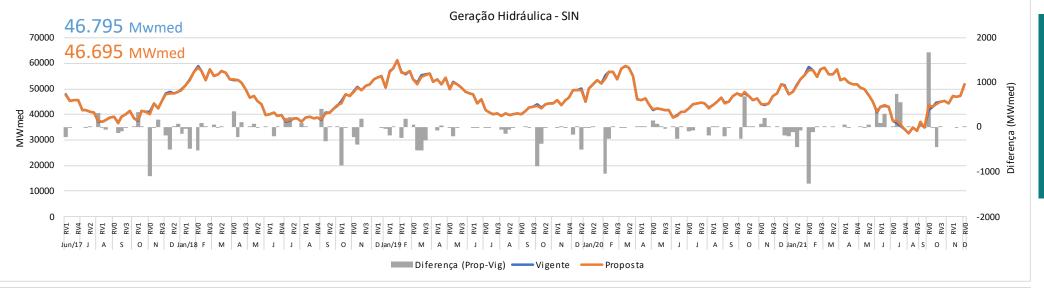

R\$/MWh	2017		2018		2019		2020		Total	
KŞ/IVIVVII	Vig.	Prop.	Vig.	Prop.	Vig.	Prop.	Vig.	Prop.	Vig.	Prop.
Média	425.77	427.98	337.80	337.34	237.94	240.37	179.03	180.30	279.57	280.83
Diferença	2.21 ((0.52%)	-0.46 (-	0.14%)	2.43 (1.02%)		1.27 (0.71%)		1.25 (0	0.45%)
Desv. pad	232.19	230.43	223.78	221.12	108.16	106.90	142.37	142.52	197.13.62	195.72

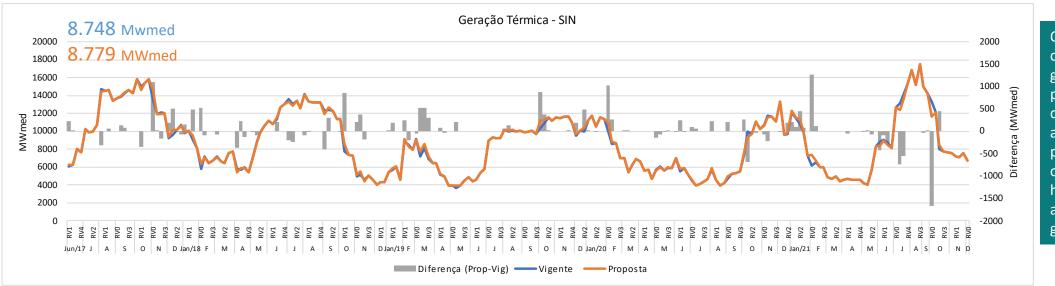


R\$/MWh	RV0	RV1	RV2	RV3	RV4
,	Proposta - Vigente	Proposta - Vigente	Proposta - Vigente	Proposta - Vigente	Proposta - Vigente
Desvio absoluto	21.48	9.55	7.31	1.69	0
médio			nforme esperado, o orreram na RVO.	is	



%	2017		2018		20	19	20	20	2021		
70	Vig.	Prop.									
РМО	51	47	46	42	28	30	174	174	61	64	
RVx	19	20	22	20	24	25	67	64	21	21	



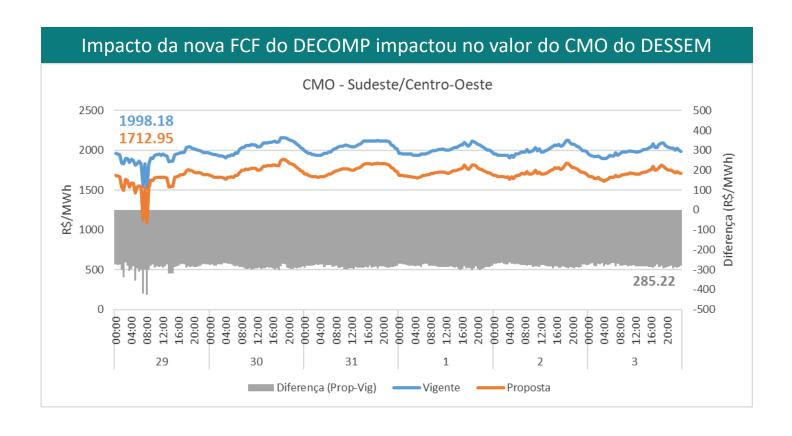

SIN

Geração Hidráulica

GT CH

Despachos equivalentes entre as metodologias analisadas. As maiores diferenças ocorreram entre os meses de setembro e março, período que abrange o período úmido do ciclo hidrológico. Não há viés entre as metodologias avaliadas com relação a geração hidráulica.

Os resultados mostram um comportamento semelhante a geração hidráulica, em grande parte do período verificam-se despachos equivalentes entre as metodologias vigente e proposta e os desvios observados, implicam que não há viés entre as metodologias avaliadas com relação a geração térmica.



1ª semana operativa de setembro de 2021

A RVO de setembro apresentou o maior desvio de preço para a 1ª semana operativa de setembro de 2021.

RECOMEDAÇÃO GT CH: SMAP 1º MÊS

- 9ª Reunião do GT SMAP: 11/05/2023
- Com base nos resultados ora apresentados, o GT CH, co-coordenado pela CCEE e ONS e com a participação ativa dos agentes, recomenda pela implementação da metodologia aqui denominada proposta 1º mês, para a maioria das bacias, exceto as bacias dos rios Madeira, Xingu, Teles Pires, Jari e Parnaíba.
- Aprovação pela Comissão Gestora: julho/2023
- Aprovação pela Comissão Deliberativa: julho/2023
- Disponibilização do relatório no Portal CT PMO/PLD: 12/05/2023
- Aviso em Agosto no PMO Setembro, com um mês de antecedência conforme Art 3º, parágrafo 1º CNPE 07/20
- Período sombra: Setembro
- Entrada oficial: Outubro

Tentativa: sujeito a atrasos em decorrência da disponibilidade de previsões ECMWF

Atividade 2 – Uso do modelo SMAP/ONS em horizonte estendido no modelo Decomp (1º mês operativo)

CT CII	2022							2023					
GT-CH	Jul	Ago	Set	Out	Nov	Dez	Jan	Fev	Mar	Abr	Mai	Jun	
Uso do modelo SMAP/ONS em horizonte estendido no modelo Decomp (1º mês operativo)		Reunião Agentes											
Anúncio formal do CT PMO/PLD aos agentes (PMO Agosto)													
Levantamento e coleta dos dados básicos necessários													
Aplicação dos modelos de previsão nas etapas e bacias selecionadas						Reuniã Agente	0-						
Avaliação dos resultados													
Simulações com modelo DECOMP										Reuniâ Agente			
Elaboração de relatório e compilação de resultados finais													
Encerramento / Encaminhamento de relatório da proposta pelo CT PMO/PLD													

Obrigado!

https://ctpmopld.org.br/

Apoio

https://ctpmopld.org.br/

Cálculo da volatilidade semanal

$$Vol = \sqrt{\frac{1}{T-1} \cdot \sum_{t=1}^{T} (R_t - E[R])^2}; \quad R_t = \ln\left(\frac{P_t}{P_{t-1}}\right)$$

Volatilidade na base temporal dos estágios (semanal no caso).

 R_t Retorno do tempo t

 P_t Valor da amostra do tempo t

 P_{t-1} Valor da amostra do tempo t-1

E Operador que indica o cálculo da média dos retornos

T Número total de amostras

Área do estudo

Todas as bacias calibradas com o modelo SMAP/ONS, em uso oficial no PMO de agosto/2022.

Dados de precipitação observada

Mesma metodologia de utilizada atualmente operacionalmente.

Dados de precipitação prevista

D+0 ao D+14 Pmed ETA40 + GEFS (2017 e 2018) e ECMWF (a partir de 2019)

D+15 Previsões estendidas do ECMWF

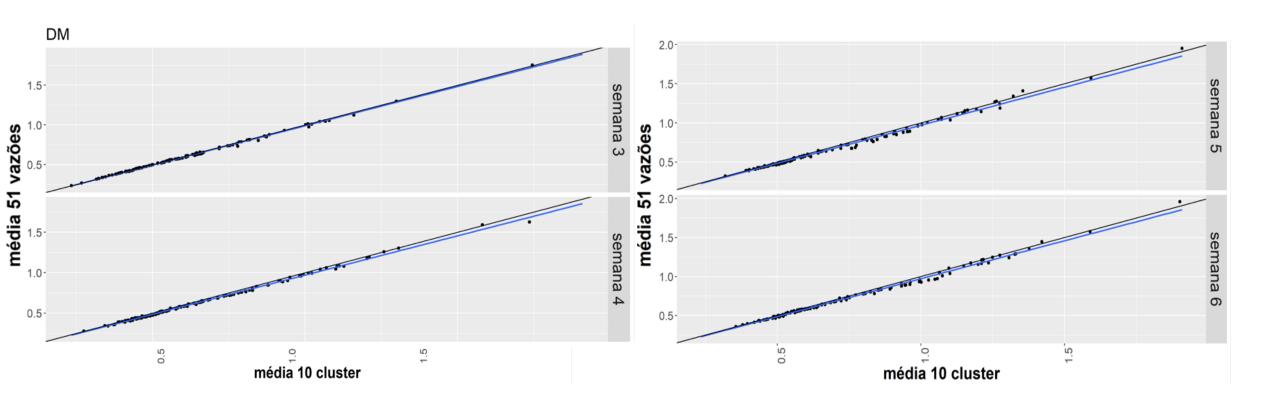
Período do estudo

Foram feitas simulações a partir do PMO de junho/2017 até o dezembro/2021.

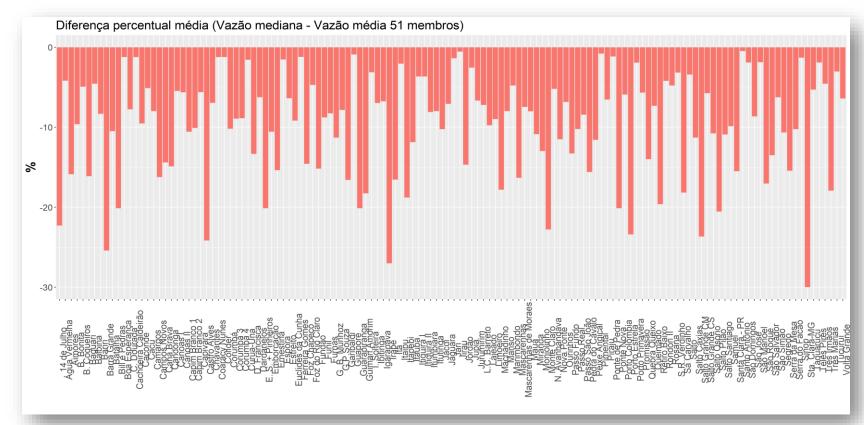
De forma a aumentar o tamanho da amostra avaliada, foram executadas rodadas iniciadas quinta-feira, considerando a semana operativa oficial, e domingo, considerando uma semana operativa iniciando terça.

Para a obtenção de boas estimativas dos escoamentos de base e superficial, o modelo SMAP/ONS começou a ser executado a partir de janeiro/2016. Foram processados ao todo 420 casos.

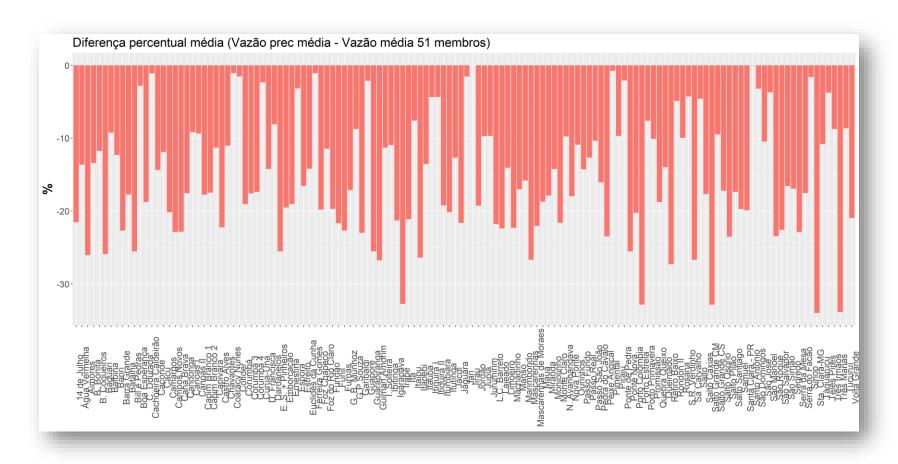
Métricas de avaliação

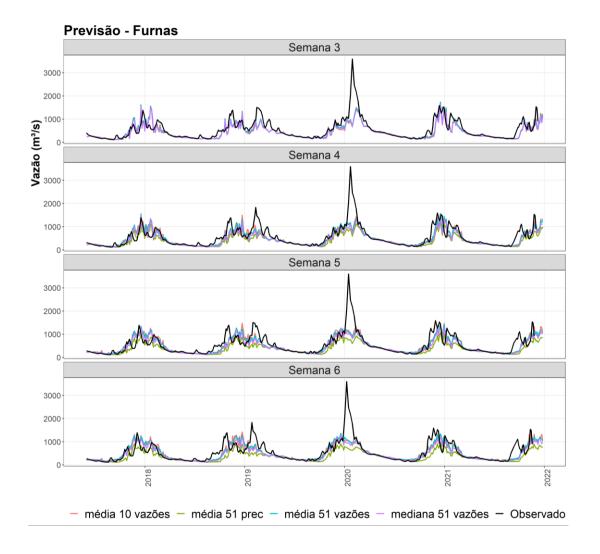

Foram comparados os resultados obtidos com a metodologia proposta e a metodologia vigente, através das seguintes métricas: PBIAS, Distância Multicritério, MAPE, NASH para todas as bacias hidrográficas. A análise de desempenho foi realizada para as **previsões de vazões e energia natural afluente**.

- Primeiramente, será apresentada a DM da comparação dos resultados utilizando o ensemble completo com 51 membros e a previsão agregada com 10 membros, segundo a metodologia apresentada no GT HM. Assim, deseja-se verificar se há uma perda de qualidade na previsão de vazões ao se considerar apenas os 10 membros selecionados.
- Em seguida, foi avaliada a diferença percentual média das previsões de vazões obtidas com a vazão média dos 51 membros e as seguintes vazões: i) vazão média calculada com 10 membros; ii) vazão mediana e iii) vazão obtida com a precipitação média.
- Também são comparadas as vazões naturais totais de cada UHE e as ENAs de cada bacia obtidas com a metodologia proposta e a metodologia vigente. Foram utilizadas as seguintes métricas de avaliação: MAPE, NSE, DM, PBIAS, de cada semana operativa e da média das 4 primeiras semanas.


$$MAPE = \frac{1}{n} \sum_{t=1}^{n} \left| \frac{O_t - P_t}{O_t} \right| \qquad NSE = 1 - \frac{\sum_{t=1}^{n} (P_t - O_t)^2}{\sum_{t=1}^{n} (O_t - \bar{O})^2} \qquad PBIAS = \frac{1}{n} \sum_{t=1}^{n} \frac{O_t - P_t}{O_t}$$

$$DM = \sqrt{(1 - NASH)^2 + MAPE^2}$$


Distância Multicritério entre as metodologias propostas


• É possível observar que a previsão resultante da média dos 10 membros selecionados, possui uma qualidade bastante próxima da obtida com os 51 membros.

- Nota-se que a previsão de vazão resultante da mediana dos 51 membros tem um claro viés negativo, para todas as subbacias modelados.
- Como a distribuição das previsões possui uma alta assimetria, ao se considerar a mediana em vez da média produz-se uma previsão submestimada.

- A previsão de vazão resultante quando considerada a precipitação média também produz uma previsão de vazão subestimada.
- A consideração da precipitação média acaba "achatando" o hidrograma.

- Nota-se que a previsão proveniente da chuva média (linha verde) está sempre em um nível inferior que as demais. Em seguida, a previsão proveniente da mediana, em menor intensidade, também é subestimada.
- Já a previsão resultante da média dos 10 membros selecionados (linha vermelha) tem uma trajetória bem próxima da previsão obtida com a média dos 51 membros (linha verde).